【題目】學校擬購進一批手動噴淋消毒設備,已知1A型噴霧器和2B型噴霧器共需90元;2A型噴霧器和3B型噴霧器共需165元.

1)問一個A型噴霧器和一個B型噴霧器的單價各是多少元?

2)學校決定購進兩種型號的噴霧器共60個,并且要求B型噴霧器的數(shù)量不能多于A型噴霧器的4倍,請你設計出最為省錢的購買方案,并說明理由.

【答案】1)一個A型噴霧器的單價為60元,一個B型噴霧器的單價為15元;(2)最省錢的購買方案為:購買A型噴霧器12個,B型噴霧器48個.

【解析】

1)設一個A型噴霧器的單價為元,一個B型噴霧器的單價為元,根據(jù)1A型噴霧器和2B型噴霧器共需90元;2A型噴霧器和3B型噴霧器共需165元列出方程組進行求解即可;

2)設購進A型噴霧器個,則購進B型噴霧器個,根據(jù)題意先求出m的取值范圍,再設這些噴霧器的總費用為W元,得到W關于m的函數(shù)解析式,利用一次函數(shù)的性質(zhì)進行求解即可.

1)設一個A型噴霧器的單價為元,一個B型噴霧器的單價為元,由題意可得:

解之得:,

答:一個A型噴霧器的單價為60元,一個B型噴霧器的單價為15元;

2)設購進A型噴霧器個,則購進B型噴霧器個,由題意可得:

解之得:≥12

設購買這些噴霧器的總費用為W元,則有:

W的增大而增大

時,W取得最小值,及最省錢.

(個)

答:最省錢的購買方案為:購買A型噴霧器12個,B型噴霧器48個.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展普通話演講比賽,九(1)、(2)兩個班根據(jù)初賽成績各選出5名選手參加復賽,10名選手的復賽成績?nèi)鐖D所示:

1)根據(jù)如圖補充完成下面的成績統(tǒng)計分析表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

合格率

優(yōu)秀率

九(1)班

85

   

85

   

   

60%

九(2)班

85

80

   

160

100%

   

2)九(1)班學生說他們的復賽成績好于九(2)班,結合圖表,請你給出三條支持九(1)班學生觀點的理由.

3)如果從復賽成績100分的3名選手中任選2人參加學校決賽,求選中的兩位選手恰好一位來自于九(1)班,另一位來自于九(2)班的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點A0)和點B1,),與x軸的另一個交點為C

1)求拋物線的函數(shù)表達式;

2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;

3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE

判斷四邊形OAEB的形狀,并說明理由;

FOB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若拋物線軸相交于兩點,與軸相交于點,直線經(jīng)過點

1)求拋物線的解析式;

2)點是直線下方拋物線上一動點,過點軸于點,交于點,連接

①線段是否有最大值?如果有,求出最大值;如果沒有,請說明理由;

②在點運動的過程中,是否存在點,恰好使是以為腰的等腰三角形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+mx+4mx軸交于點A(0)和點B(,0),與y軸交于點C,,若對稱軸在y軸的右側.

1)求拋物線的解析式

2)在拋物線的對稱軸上取一點M,使|MC-MB|的值最大;

3)點Q是拋物線上任意一點,過點QPQx軸交直線BC于點P,連接CQ,當△CPQ是等腰三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場第一次用11000元購進某款拼裝機器人進行銷售,很快銷售一空,商家又用24000元第二次購進同款機器人,所購進數(shù)量是第一次的2倍,但單價貴了10元.

1)求該商家第一次購進機器人多少個?

2)若在這兩次機器人的銷售中,該商場全部售完,而且售價都是130元,問該商場總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結AC,過上一點E作EGAC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,RtOAB的直角頂點Bx軸的正半軸上,點A在第一象限,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C.交AB于點D,連結CD.若ACD的面積是2,則k的值是_____

查看答案和解析>>

同步練習冊答案