【題目】三角形的三個(gè)項(xiàng)點(diǎn)坐標(biāo)為:△內(nèi)有一點(diǎn)經(jīng)過平移后的對(duì)應(yīng)點(diǎn)為,將△做同樣平移得到△.
(1)寫出三點(diǎn)的坐標(biāo):;
(2)在圖中畫出△;
(3)求出△的面積.
【答案】(1)A1(4,2),B1(0,1),C1(5,-3);(2)作圖見解析;(3)
【解析】
(1)由點(diǎn)P的對(duì)應(yīng)點(diǎn)坐標(biāo)得出平移的方向和距離,據(jù)此依據(jù)平移的點(diǎn)的坐標(biāo)變化規(guī)律可得;
(2)根據(jù)(1)中所得結(jié)果作圖即可得;
(3)利用割補(bǔ)法進(jìn)行計(jì)算即可.
解:(1)由點(diǎn)P(m,n)經(jīng)過平移后的對(duì)應(yīng)點(diǎn)為P1(m+3,n-2)知需將△ABC先向右平移3個(gè)單位、再向下平移2個(gè)單位,
則點(diǎn)A(1,4)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(4,2),
B(-3,3)的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為(0,1),
C(2,-1)的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為(5,-3);
(2)如圖所示,△A1B1C1即為所求;
(3)
∴△的面積為10.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為預(yù)防甲型H1N1流感,某校對(duì)教室噴灑藥物進(jìn)行消毒.已知噴灑藥物時(shí)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.
(1)求噴灑藥物時(shí)和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;
(2)若空氣中每立方米的含藥量低于2毫克學(xué)生方可進(jìn)教室,問消毒開始后至少要經(jīng)過多少分鐘,學(xué)生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時(shí)間不低于10分鐘時(shí),才能殺滅流感病毒,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點(diǎn),若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)D重合,此時(shí),底面圓的直徑為10cm,則圓柱上M,N兩點(diǎn)間的距離是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)0是坐標(biāo)原點(diǎn).邊長為6的正方形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,點(diǎn)E是對(duì)角線AC上一點(diǎn),連接OE、BE,BE的延長線交OA于點(diǎn)P,若△OCE的面積為12.
(1)求點(diǎn)E的坐標(biāo):
(2)求△OPE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖象(折線)描述了一輛汽車在某一筆直的公路上的行駛過程中,汽車離出發(fā)地的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了140千米;②汽車在行駛途中停留了1小時(shí);③汽車出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度比汽車出發(fā)后4小時(shí)至6小時(shí)之間行駛的速度大;④汽車出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度在逐漸減。渲姓_的說法共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【新知理解】
如圖①,點(diǎn)C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點(diǎn)C是線段AB的“巧點(diǎn)”.
線段的中點(diǎn)__________這條線段的“巧點(diǎn)”;(填“是”或“不是”).
若AB = 12cm,點(diǎn)C是線段AB的巧點(diǎn),則AC=___________cm;
【解決問題】
(3) 如圖②,已知AB=12cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向點(diǎn)B勻速移動(dòng):點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA向點(diǎn)A勻速移動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止,設(shè)移動(dòng)的時(shí)間為t(s).當(dāng)t為何值時(shí),A、P、Q三點(diǎn)中其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的巧點(diǎn)?說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com