【題目】已知射線與直線交于點(diǎn),平分,于點(diǎn),.
(1)如圖1,若;
①求的度數(shù);
②試說明平分.
(2)如圖2,設(shè)的度數(shù)為,當(dāng)為多少度時(shí),射線是的三等分線?并說明理由.
【答案】(1)①150°;②說明見解析;(2)18°或45°,說明見解析.
【解析】
(1)①根據(jù)題意可求∠BOF=30°,由平角定義可求∠DOF的度數(shù)
②通過題意可求∠AOD=∠BOG=60°,即可得OD平分∠AOG
(2)設(shè)∠AOD=β,分∠AOD=2∠DOG,或∠DOG=2∠AOD,兩種情況討論,根據(jù)題意可列方程,可求β的值,即可得α的值.
(1)①∵AE∥OF
∴∠A=∠BOF
∵OF平分∠COF
∴∠BOC=60°,∠COF=30°
∴∠DOF=180-30°=150°
②∵∠BOC=60°
∴∠AOD=60°
∵OF⊥OG
∴∠BOF+∠FOG=90°
∴∠BOG=60°
∵∠BOG+∠DOG+∠AOD=180°
∴∠DOG=60°=∠AOD
∴OD平分∠AOG
(2)設(shè)∠AOD=β
∵射線OD是∠AOG的三等分線
∴∠AOD=2∠DOG,或∠DOG=2∠AOD
若∠AOD=2∠DOG
∴∠DOG=β
∵∠BOC=∠AOD,OF平分∠BOC
∴∠BOF=β
∵OF⊥OG
∴∠BOG=90-α
∵∠BOG+∠DOG+∠AOD=180°
∴β+90-β+β=180°
∴∠β=90°
∴∠BOF=45°
∵OF∥AE
∴∠A=∠BOF=45°
即α=45°
若∠DOG=2∠AOD=2β
∵∠BOC=∠AOD,OF平分∠BOC
∴∠BOF=β
∵OF⊥OG
∴∠BOG=90-α
∵∠BOG+∠DOG+∠AOD=180°
∴2β+90-β+β=180°
∴∠β=36°
∴∠BOF=18°
∴OF∥AE
∴∠A=∠BOF=18°
∴α=18°
綜上所述α為18°或45°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載著這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長分別為5里;12里;13里,問這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )
A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將相同的矩形卡片,按如圖方式擺放在一個(gè)直角上,每個(gè)矩形卡片長為2,寬為1,依此類推,擺放2014個(gè)時(shí),實(shí)線部分長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好的治理西流湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買 10 臺污水處理設(shè)備.現(xiàn)有 A、B 兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:
A 型 | B 型 | |
價(jià)格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 200 |
經(jīng)調(diào)查:購買一臺 A 型設(shè)備比購買一臺 B 型設(shè)備多 2 萬元,購買 2 臺 A 型設(shè)備比購買 3 臺 B 型設(shè)備少 6 萬元.
(1)求 a,b 的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認(rèn)為該公司 有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,,直線過點(diǎn).
(1)當(dāng)時(shí),如圖①,分別過點(diǎn)、作于點(diǎn),于點(diǎn).求證:.
(2)當(dāng),時(shí),如圖②,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接、,動點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿邊向終點(diǎn)運(yùn)動,同時(shí)動點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位的速度沿向終點(diǎn)運(yùn)動,點(diǎn)、到達(dá)相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)運(yùn)動時(shí)間為秒.
①用含的代數(shù)式表示.
②直接寫出當(dāng)與全等時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有兩個(gè)不等實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩實(shí)數(shù)根為x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)轉(zhuǎn)盤被平均分成12份,每份上寫上不同的數(shù)字,游戲方法:先猜數(shù)后轉(zhuǎn)動轉(zhuǎn)盤,若指針指向的數(shù)字與所猜的數(shù)一致,則猜數(shù)者獲勝.現(xiàn)提供三種猜數(shù)方法:
①猜是“奇數(shù)”,或是“偶數(shù)”;
②猜是“大于10的數(shù)”,或是“不大于10的數(shù)”;
③猜是“3的倍數(shù)”,或是“不是3的倍數(shù)”.
如果你是猜數(shù)者,你愿意選擇哪一種猜數(shù)方法?怎樣猜?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com