【題目】在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于 .
【答案】3
【解析】解:平移CD到C′D′交AB于O′,如右圖所示, 則∠BO′D′=∠BOD,
∴tan∠BOD=tan∠BO′D′,
設(shè)每個小正方形的邊長為a,
則O′B= ,O′D′= ,BD′=3a,
作BE⊥O′D′于點E,
則BE= ,
∴O′E= = ,
∴tanBO′E= ,
∴tan∠BOD=3,
所以答案是:3.
【考點精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中生在數(shù)學(xué)運算中使用計算器的現(xiàn)象越來越普遍,某校一興趣小組隨機抽查了本校若干名學(xué)生使用計算器的情況.以下是根據(jù)抽查結(jié)果繪制出的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)若從這次接受調(diào)查的學(xué)生中,隨機抽查一名學(xué)生恰好是“不常用”計算器的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】應(yīng)用探究題 在圖①中,已知長方形的長和寬分別為a,b,將線段A1A2向右平移1個單位長度到B1B2的位置,得到封閉圖形A1A2B2B1(即陰影部分).
在圖②中,將折線A1A2A3向右平移1個單位長度到折線B1B2B3的位置,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖③中,請你畫一條類似的有兩個折點的折線,同樣向右平移1個單位長度,從而得到一個封閉圖形,并用陰影表示;
(2)請你分別寫出前三個圖形中除去陰影部分后剩余部分的面積:S1,S2,S3;
(3)聯(lián)想與探索:
如圖④,在一塊長方形草地上,草地的長和寬仍分別為a,b,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位長度),請你猜想空白部分表示的草地面積是多少,并說明你的猜想是正確的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.
(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?
(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實現(xiàn)目標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場,圖中的函數(shù)圖象刻畫了“龜免再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程),有下列說法:
①兔子和烏龜同時從起點出發(fā);②“龜兔再次賽跑”的路程為1000米;
③烏龜在途中休息了10分鐘; ④兔子比烏龜早10分鐘到達終點.
其中正確的說法是_____(把你認為正確說法的序號都填上);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系內(nèi),點A的坐標(biāo)為(0,8),經(jīng)過原點的直線l1與經(jīng)過點A的直線l2相交于點B,點B坐標(biāo)為(6,2).
(1)直接寫出直線l1的表達式 ,l2的表達式 ;
(2)點C為線段0B上一動點(點C不與點0,B重合),作CD∥y軸交直線l2于點D,
①設(shè)點C的橫坐標(biāo)為3,則點D的坐標(biāo)為 ;
②設(shè)點C的橫坐標(biāo)為m,則點D的坐標(biāo)為 ;(用含m的代數(shù)式表示).
③在②的條件下,若CD=2,則m的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)k取不同的值時,y關(guān)于x的函數(shù)y=kx+2(k≠0)的圖象為總是經(jīng)過點(0,2)的直線,我們把所有這樣的直線合起來,稱為經(jīng)過點(0,2)的“直線束”.那么,下面經(jīng)過點(﹣1,2)的直線束的函數(shù)式是( 。
A. y=kx﹣2(k≠0) B. y=kx+k+2(k≠0)
C. y=kx﹣k+2(k≠0) D. y=kx+k﹣2(k≠0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西綿山是中國歷史文化名山,因春秋時期晉國介子推攜母隱居于此被焚而著稱,如圖1,是綿山上介子推母子的塑像,某游客計劃測量這座塑像的高度,由于游客無法直接到達塑像底部,因此該游客計劃借助坡面高度來測量塑像的高度;如圖2,在塑像旁山坡坡腳A處測得塑像頭頂C的仰角為75°,當(dāng)從A處沿坡面行走10米到達P處時,測得塑像頭頂C的仰角剛好為45°,已知山坡的坡度i=1:3,且O,A,B在同一直線上,求塑像的高度.(側(cè)傾器高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC.
(1)如果∠AOB=900,∠BOC=400,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β (α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com