精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點A在△ECD的斜邊DE上,若,則=___.

【答案】

【解析】

根據等邊三角形的性質就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=BDC,由等腰直角三角形的性質就可以得出∠ADB=90°,由勾股定理就可以得出:,再設AE=k,則AD=3k,BD=k,求出BC=k,進而得到

的值.

∵△ACB與△ECD都是等腰直角三角形,

∴∠ECD=ACB=90°,

E=ADC=CAB=45°,EC=DC,AC=BC,

,∠ECDACD=ACBACD,

∴∠ACE=BCD.

在△AEC和△BDC中,

,

∴△AEC≌△BDC(SAS),

AE=BD,∠E=BDC,

∴∠BDC=45°

∴∠BDC+ADC=90°,

即∠ADB=90°.

.

∴可設AE=k,則AD=3k,BD=k

BC=,

.

故答案為:.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我國南宋著名數學家秦九韶的著作《數書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為( 。

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE.

(感知)如圖①,過點AAFBEBC于點F.易證ABF≌△BCE.(不需要證明)

(探究)如圖②,取BE的中點M,過點MFGBEBC于點F,交AD于點G.

(1)求證:BE=FG.

(2)連結CM,若CM=1,則FG的長為   

(應用)如圖③,取BE的中點M,連結CM.過點CCGBEAD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點,BEAP,DFAP,垂足分別是點E、F.

(1)求證:EF=AE﹣BE;

(2)聯結BF,如課=.求證:EF=EP.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知用2A型車和1B型車載滿貨物一次可運貨物10噸;用1A型車和2B型車載滿貨物一次可運貨11噸.某物流公司現有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據以上信息,解答下列問題:

1)用1A型車和1B型車都載滿貨物一次可分別運貨多少噸?

2)請你幫該物流公司設計租車方案.若A型車每輛需租金100/次,B型車每輛需租金120/次.請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC.點ECD邊上一點,AEBE分別為∠DAB和∠CBA的平分線.

(1)請你添加一個適當的條件   ,使得四邊形ABCD是平行四邊形,并證明你的結論;

(2)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(3)在(2)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sinAGF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于EF若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長寬分別是、的全等小矩形,且

(1)用含的代數式表示切痕的總長為 ;

(2)若每塊小矩形的面積為,四個正方形的面積和為,試求該矩形大鐵皮的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:如果,那么稱bn的布谷數,記為.

例如:因為,所以

因為,

所以.

1)根據布谷數的定義填空:g2=________________,g32=___________________.

2)布谷數有如下運算性質:

m,n為正整數,則,.

根據運算性質解答下列各題:

①已知,求的值;

②已知.的值.

查看答案和解析>>

同步練習冊答案