【題目】如圖,ABC,BE、CF分別是ACAB兩邊上的高,BE上截取BD=AC,CF的延長線上截取CG=AB,連接ADAG.試猜想線段ADAG的數(shù)量及位置關(guān)系,并證明你的猜想.

【答案】 = ,.證明見解析.

【解析】

試題結(jié)論:AG=AD,AGAD,只要證明ABD≌△GCA(SAS)即可解決問題.

試題解析:結(jié)論: =

證明:∵在ABC中,BE,CF分別是邊AC,AB上的高,

∴∠BFP=CEP=AFO=90°,

∴∠ABD+FPB=90°,ACG+EPC=90°,

∵∠FPB=EPC,

∴∠ACG=ABD,

ABDGCA中,

,

ABDGCA(SAS),

AG=AD,AGC=BAD,

∵∠AFO=90°,

∴∠BAD+AOF=90°,

∴∠AGC+AOF=90°,

∴∠GAD=180°90°=90°,

AGAD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,且ABCDE、FAD上兩點,CEAD,BFAD.若CEa,BFb,EFc,則AD的長為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( 。

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的直角頂點Ax軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),且∠B=60°,點P為斜邊OB上的一個動點,則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC的邊BC上一點,AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點MN,再分別以點M,N為圓心大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,ABC的邊BCx軸上,A,C兩點的坐標分別為A(0,m),Cn,0),B(﹣5,0),且(n﹣3)2+ =0.一動點P從點B出發(fā),以每秒2單位長度的速度沿射線BO勻速運動,設(shè)點P運動的時間為ts.

(1)求AC兩點的坐標;

(2)連接PA,若PAB為等腰三角形,求點P的坐標;

(3)當點P在線段BO上運動時,在y軸上是否存在點Q,使POQAOC全等?若存在,請求出t的值并直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

均為正整數(shù)時,若,用含m、n的式子分別表示,得      ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

同步練習冊答案