【題目】如圖,在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.試猜想線段AD與AG的數(shù)量及位置關(guān)系,并證明你的猜想.
【答案】 = ,⊥.證明見解析.
【解析】
試題結(jié)論:AG=AD,AG⊥AD,只要證明△ABD≌△GCA(SAS)即可解決問題.
試題解析:結(jié)論: = ,⊥.
證明:∵在△ABC中,BE,CF分別是邊AC,AB上的高,
∴∠BFP=∠CEP=∠AFO=90°,
∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°,
∵∠FPB=∠EPC,
∴∠ACG=∠ABD,
在△ABD和△GCA中,
,
∴△ABD≌△GCA(SAS),
∴AG=AD,∠AGC=∠BAD,
∵∠AFO=90°,
∴∠BAD+∠AOF=90°,
∴∠AGC+∠AOF=90°,
∴∠GAD=180°90°=90°,
∴AG⊥AD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點D,且OD=3,則△ABC的面積是( 。
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△OAB的直角頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),且∠B=60°,點P為斜邊OB上的一個動點,則PA+PC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的邊BC上一點,AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在x軸上,A,C兩點的坐標分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動點P從點B出發(fā),以每秒2單位長度的速度沿射線BO勻速運動,設(shè)點P運動的時間為ts.
(1)求A,C兩點的坐標;
(2)連接PA,若△PAB為等腰三角形,求點P的坐標;
(3)當點P在線段BO上運動時,在y軸上是否存在點Q,使△POQ與△AOC全等?若存在,請求出t的值并直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com