【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件,使△ABC≌△DCB,你添加的條件是_____.(注:只需寫出一個(gè)條件即可)

【答案】A=D

【解析】

全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)定理解答即可.

添加的條件為:∠A=∠DAB=DCOB=OC;
∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,
AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,
∵OB=OC,
∴∠DBC=∠ACB,
∵∠ABC=∠DCB,
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,
∴∠A=∠D,
∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,
∴能推出△ABC≌△DCB;
故答案是:∠A=∠D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程4(2﹣x)+x=ax的解為正整數(shù),且關(guān)于x的不等式組 有解,則滿足條件的所有整數(shù)a的值之和是( 。

A. 4 B. 0 C. ﹣1 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在購(gòu)買某場(chǎng)足球賽門票時(shí),設(shè)購(gòu)買門票數(shù)為x(張),總費(fèi)用為y(元).現(xiàn)有兩種購(gòu)買方案:

方案一:若單位贊助廣告費(fèi)10000元,則該單位所購(gòu)門票的價(jià)格為每張60元;

(總費(fèi)用=廣告贊助費(fèi)+門票費(fèi))

方案二:購(gòu)買門票方式如圖所示.

解答下列問題:

(1)方案一中,y與x的函數(shù)關(guān)系式為 ;

方案二中,當(dāng)0x100時(shí),y與x的函數(shù)關(guān)系式為

當(dāng)x>100時(shí),y與x的函數(shù)關(guān)系式為

(2)如果購(gòu)買本場(chǎng)足球賽門票超過100張,你將選擇哪一種方案,使總費(fèi)用最。空(qǐng)說明理由;

(3)甲、乙兩單位分別采用方案一、方案二購(gòu)買本場(chǎng)足球賽門票共700張,花去總費(fèi)用計(jì)58000元,求甲、乙兩單位各購(gòu)買門票多少?gòu)垼?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y1=x+my軸交于點(diǎn)A06),直線l2y=kx+1分別與x軸交于點(diǎn)B2,0),與y軸交于點(diǎn)C,兩條直線交點(diǎn)記為D

1m=   ,k=   

2)求兩直線交點(diǎn)D的坐標(biāo);

3)根據(jù)圖象直接寫出y1y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,定義直線x=m與雙曲線yn=的交點(diǎn)Am , n(m、n為正整數(shù))為“雙曲格點(diǎn)”,雙曲線yn=在第一象限內(nèi)的部分沿著豎直方向平移或以平行于x軸的直線為對(duì)稱軸進(jìn)行翻折之后得到的函數(shù)圖象為其“派生曲線”.

(1)①“雙曲格點(diǎn)”A2 , 1的坐標(biāo)為 ;②若線段A4 , 3A4 , n的長(zhǎng)為1個(gè)單位長(zhǎng)度,則n= ;
(2)圖中的曲線f是雙曲線y1=的一條“派生曲線”,且經(jīng)過點(diǎn)A2 , 3 , 則f的解析式為y=
(3)畫出雙曲線y3=的“派生曲線”g(g與雙曲線y3=不重合),使其經(jīng)過“雙曲格點(diǎn)”A2 , a、A3 , 3、A4 , b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在一條不完整的數(shù)軸上一動(dòng)點(diǎn)A向左移動(dòng)4個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,再向右移動(dòng)7個(gè)單位長(zhǎng)度到達(dá)點(diǎn)C.

(1)若點(diǎn)A表示的數(shù)為0,求點(diǎn)B、點(diǎn)C表示的數(shù);

(2)若點(diǎn)C表示的數(shù)為5,求點(diǎn)B、點(diǎn)A表示的數(shù);

(3)如果點(diǎn)A、C表示的數(shù)互為相反數(shù),求點(diǎn)B表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是線段AB上任一點(diǎn),AB=12 cm,C、D兩點(diǎn)分別從P、B同時(shí)向A點(diǎn)運(yùn)動(dòng),且C點(diǎn)的運(yùn)動(dòng)速度為2 cm/s,D點(diǎn)的運(yùn)動(dòng)速度為3 cm/s,運(yùn)動(dòng)的時(shí)間為t s.

(1)若AP=8 cm.

①運(yùn)動(dòng)1 s后,求CD的長(zhǎng);

②當(dāng)D在線段PB運(yùn)動(dòng)上時(shí),試說明AC=2CD;

(2)如果t=2 s時(shí),CD=1 cm,試探索AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,現(xiàn)將一直角三角形PMN放入圖中,其中P=90°,PM交AB于點(diǎn)E,PN交CD于點(diǎn)F

(1)當(dāng)PMN所放位置如圖所示時(shí),則PFD與AEM的數(shù)量關(guān)系為   

(2)當(dāng)PMN所放位置如圖所示時(shí),求證:∠PFD﹣∠AEM=90°;

(3)在(2)的條件下,若MN與CD交于點(diǎn)O,且∠DON=30°,∠PEB=15°,求N的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,實(shí)線部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.

(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案