【題目】已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分別為D,E,
(1)如圖1,
①線段CD和BE的數(shù)量關(guān)系是 ;
②請(qǐng)寫出線段AD,BE,DE之間的數(shù)量關(guān)系并證明.
(2)如圖2,上述結(jié)論②還成立嗎?如果不成立,請(qǐng)直接寫出線段AD,BE,DE之間的數(shù)量關(guān)系.
【答案】(1)①CD=BE;②AD=BE+DE.證明見解析;(2)②中的結(jié)論不成立.DE=AD+BE.
【解析】
(1)①此題可證明出△ACD和△CBE全等即可;②由①全等求解即可;
(2)此時(shí)的結(jié)論不成立,此時(shí)變成DE=AD+BE,依然用△ACD和△CBE全等證明即可.
(1)①CD=BE.
理由:∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠B,
在△ACD和△CBE中,
,
∴△ACD≌△CBE,
∴CD=BE.
②AD=BE+DE.
理由:∵△ACD≌△CBE,
∴AD=CE,CD=BE,
∵CE=CD+DE=BE+DE,
∴AD=BE+DE.
(2)②中的結(jié)論不成立. DE=AD+BE.
理由:∵AD⊥CM,BE⊥CM,
∴∠ACB=∠BEC=∠ADC=90°,
∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠B,
在△ACD和△CBE中,
,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∵DE=CD+CE=BE+AD,
∴DE=AD+BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店進(jìn)行店慶活動(dòng),決定購(gòu)進(jìn)甲、乙兩種紀(jì)念品,若購(gòu)進(jìn)甲種紀(jì)念品1件,乙種紀(jì)念品2件,需要160元;購(gòu)進(jìn)甲種紀(jì)念品2件,乙種紀(jì)念品3件,需要280元.
(1)購(gòu)進(jìn)甲乙兩種紀(jì)念品每件各需要多少元?
(2)該商場(chǎng)決定購(gòu)進(jìn)甲乙兩種紀(jì)念品100件,并且考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這些紀(jì)念品的資金不少于6300元,同時(shí)又不能超過6430元,則該商場(chǎng)共有幾種進(jìn)貨方案?
(3)若銷售每件甲種紀(jì)念品可獲利30元,每件乙種紀(jì)念品可獲利12元,在第(2)問中的各種進(jìn)貨方案中,哪種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在校運(yùn)會(huì)之前想了解九年級(jí)女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級(jí)500名女生中隨機(jī)抽出60名女生進(jìn)行一次抽樣摸底測(cè)試所得數(shù)據(jù)如下表:
(1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______.
A.40% B.7 C.6.5 D.5%
(2)請(qǐng)將下面統(tǒng)計(jì)圖補(bǔ)充完整.
(3)根據(jù)上述抽查,請(qǐng)估計(jì)該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會(huì)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OP1A1B1,A1P2A2B2,A2P3A3B3,……,An-1PnAnBn都是正方形,對(duì)角線OA1,A1A2,A2A3,……,An-1An都在y軸上(n≥1的整數(shù)),點(diǎn)P1(x1,y1),P2(x2,y2),……,Pn(xn,yn)在反比例函數(shù)y=(x>0)的圖象上,并已知B1(-1,1).
(1)求反比例函數(shù)y=的解析式;
(2)求點(diǎn)P2和P3的坐標(biāo);
(3)由(1)、(2)的結(jié)果或規(guī)律試猜想并直接寫出:△PnBnO的面積為 ,點(diǎn)Pn的坐標(biāo)為______(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請(qǐng)你根據(jù)這個(gè)規(guī)律寫出第9個(gè)數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點(diǎn)E沿BC邊從點(diǎn)B開始向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng);點(diǎn)F沿CD邊從點(diǎn)C開始向點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),如果E、F同時(shí)出發(fā),用t(0≤t≤6)秒表示運(yùn)動(dòng)的時(shí)間,當(dāng)t為何值時(shí),以點(diǎn)E、C、F為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+4(k≠0)與y軸交于點(diǎn)A.
(1)如圖,直線y=﹣2x+1與直線y=kx+4(k≠0)交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B的橫坐標(biāo)為-1.
①求點(diǎn)B的坐標(biāo)及k的值;
②直線y=﹣2x+1與直線y=kx+4與y軸所圍成的△ABC的面積等于 ;
(2)直線y=kx+4(k≠0)與x軸交于點(diǎn)E(x 0 ,0),若﹣2<x 0 <﹣1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小敏在測(cè)量學(xué)校一幢教學(xué)樓AB的高度時(shí),她先在點(diǎn)C測(cè)得教學(xué)樓的頂部A的仰角為30°,然后向教學(xué)樓前進(jìn)12米到達(dá)點(diǎn)D,又測(cè)得點(diǎn)A的仰角為45°.請(qǐng)你根據(jù)這些數(shù)據(jù),求出這幢教學(xué)樓AB的高度.
(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com