【題目】如圖,拋物線的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸.
(3)探究對稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形?若存在,請求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請說明理由.
【答案】(1);(2)D的坐標(biāo)是(1,﹣4),對稱軸是直線x=1;(3)P(1,)或(1,)或(1,)或(1,4).
【解析】
試題分析:(1)根據(jù)拋物線的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),可以求得拋物線的解析式;
(2)根據(jù)(1)中的解析式化為頂點(diǎn)式,即可得到此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸;
(3)首先寫出存在,然后運(yùn)用分類討論的數(shù)學(xué)思想分別求出各種情況下點(diǎn)P的坐標(biāo)即可.
試題解析:(1)∵拋物線的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),∴,解得:,即此拋物線的解析式是;
(2)∵=,∴此拋物線頂點(diǎn)D的坐標(biāo)是(1,﹣4),對稱軸是直線x=1;
(3)存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形,設(shè)點(diǎn)P的坐標(biāo)為(1,y),分三種情況討論:
①當(dāng)PA=PD時=,解得,y=,即點(diǎn)P的坐標(biāo)為(1,);
②當(dāng)DA=DP時,=,解得,y=,即點(diǎn)P的坐標(biāo)為(1,)或(1,);
③當(dāng)AD=AP時,=,解得,y=±4,即點(diǎn)P的坐標(biāo)是(1,4)或(1,﹣4),當(dāng)點(diǎn)P為(1,﹣4)時與點(diǎn)D重合,故不符合題意.
由上可得,以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形時,點(diǎn)P的坐標(biāo)為(1,)或(1,)或(1,)或(1,4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.
(1)花圃的面積為____(用含的式子表示);
(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;
(3)已知某園林公司修建通道、花圃的造價(元)、(元)與修建面積 之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時,修建的通道和花圃的總造價為105920元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家庭農(nóng)場要建一個長方形的養(yǎng)兔場,兔場的兩邊靠墻(兩堵墻互相垂直,長度不限),另兩邊用木欄圍成,木欄總長20米.
(1)兔場的面積能達(dá)到100平方米嗎?請你給出設(shè)計方案;
(2)兔場的面積能達(dá)到110平方米嗎?如能,請給出設(shè)計方案,若不能說明理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寧波某企業(yè)新增了一個化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購買A、B兩種型號的污水處理設(shè)備共10臺,具體情況如下表:
經(jīng)預(yù)算,企業(yè)最多支出136萬元購買設(shè)備,且要求月處理污水能力不低于2150噸.
(1)該企業(yè)有哪幾種購買方案?
(2)哪種方案更省錢?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解上一次八年級數(shù)學(xué)測驗(yàn)成績情況,隨機(jī)抽取了40名學(xué)生的成績進(jìn)行統(tǒng)計分析,這40名學(xué)生的成績數(shù)據(jù)如下:
55 62 67 53 58 83 87 64 68 85
60 94 81 98 51 83 78 77 66 71
91 72 63 75 88 73 52 71 79 63
74 67 78 61 97 76 72 77 79 71
(1)將樣本數(shù)據(jù)適當(dāng)分組,制作頻數(shù)分布表:
分 組 |
|
|
|
|
|
頻 數(shù) |
|
|
|
|
|
(2)根據(jù)頻數(shù)分布表,繪制頻數(shù)直方圖:
(3)從圖可以看出,這40名學(xué)生的成績都分布在什么范圍內(nèi)?分?jǐn)?shù)在哪個范圍的人數(shù)最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com