【題目】已知拋物線y=ax2﹣4ax+c經(jīng)過點(diǎn)A(0,2),頂點(diǎn)B的縱坐標(biāo)為3.將直線AB向下平移,與x軸、y軸分別交于點(diǎn)C、D,與拋物線的一個(gè)交點(diǎn)為P,若D是線段CP的中點(diǎn),則點(diǎn)P的坐標(biāo)為________

【答案】

【解析】

試題首先求出頂點(diǎn)坐標(biāo),利用待定的系數(shù)法求得物線的解析式;求出直線AB,進(jìn)一步得到直線PC的解析式,由此聯(lián)立一元二次方程求得結(jié)果.

試題解析:拋物線y=ax2-4ax+b的對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)為B2,3),且經(jīng)過A0,2),

代入函數(shù)解析式得

解得,

所以函數(shù)解析式為yx2+x+2;

如圖,

設(shè)P點(diǎn)坐標(biāo)為(x,x2+x+2),過點(diǎn)PPQ⊥x軸,垂足為Q,可得到△COD∽△CQP

,又因?yàn)?/span>,所以

因此D點(diǎn)坐標(biāo)為(0,x2+x+1),

經(jīng)過A、B兩點(diǎn)直線AB的解析式為y=x+2,

因此直線CP的解析式為y=x+-x2+x+1=-x2+x+1,與拋物線聯(lián)立方程得,

-x2+x+2=-x2+x+1,解得x=,(負(fù)舍去)

代入拋物線解析式可得y=

因此P點(diǎn)坐標(biāo)為P(,)

考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點(diǎn),在格點(diǎn)中任 意放置點(diǎn) C,恰好能使ABC 的面積為 1,則這樣的 C 點(diǎn)有 ( )個(gè)

A. 5 個(gè)B. 6 個(gè)C. 7 個(gè)D. 8 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為正方形ABCD對(duì)角線的交點(diǎn),EAB邊上一點(diǎn),FBC邊上一點(diǎn),EBF的周長等于BC的長.

(1)若AB=12,BE=3,求EF的長;

(2)求∠EOF的度數(shù);

(3)若OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E是正方形ABCD的邊CD上一點(diǎn),BFAEF.

(1)求證:△ABF∽△EAD;

(2)當(dāng)AD=2=時(shí),求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)yx+1yax+3的圖象交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為1,

1)關(guān)于xy的方程組 的解是   ;

2a   ;

3)求出函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種機(jī)器人都被用來搬運(yùn)化工原料,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg,A型機(jī)器人搬運(yùn)900kgB型機(jī)器人搬運(yùn)600kg所用時(shí)間相等,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小晶和小紅玩擲骰子游戲,每人將一個(gè)各面分別標(biāo)有數(shù)字、、、的正方體骰子擲一次,把兩人擲得的點(diǎn)數(shù)相加,并約定:若點(diǎn)數(shù)之和等于,則小晶贏;若點(diǎn)數(shù)之和等于,則小紅贏;若點(diǎn)數(shù)之和是其他數(shù),則兩人不分勝負(fù),那么(

A. 小晶贏的機(jī)會(huì)大 B. 小紅贏的機(jī)會(huì)大

C. 小晶、小紅贏的機(jī)會(huì)一樣大 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)DBC的中點(diǎn),AB =DE,BEAC

1)求證:△ABC≌△DEB;

2)連結(jié)AD、AE、CE,如圖2

①求證:CE是∠ACB的角平分線;

②請(qǐng)判斷△ABE是什么特殊形狀的三角形,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案