【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1,2,1,恰好對應(yīng)展開式中的系數(shù);第四行的四個數(shù)1,3,3,1,恰好對應(yīng)著展開式中的系數(shù)等等.
(1)根據(jù)上面的規(guī)律,寫出的展開式.
(2)利用上面的規(guī)律計(jì)算:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小楠是一個樂學(xué)習(xí),善思考,愛探究的同學(xué),她對函數(shù)的圖象和性質(zhì)進(jìn)行了探究,請你將下列探究過程補(bǔ)充完整:
(Ⅰ)函數(shù)的自變量x的取值范圍是 .
(Ⅱ)用描點(diǎn)法畫函數(shù)圖象:
(i)列表:
x | … | ﹣5 | ﹣2 | ﹣1 | 0 | … | 2 | 3 | 4 | 7 | … |
y | … | a | 2 | 3 | b | … | 6 | 3 | 2 | 1 | … |
表中a的值為 ,b的值為 .
(ii)描點(diǎn)連線:請?jiān)谙聢D畫出該圖象的另一部分.
(Ⅲ)觀察函數(shù)圖象,得到函數(shù)的性質(zhì):
當(dāng)x 時,函數(shù)值y隨x的增大而 ;
當(dāng)x 時,函數(shù)值y隨x的增大而減少.
(IV)應(yīng)用:若≥6,則x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),且,,垂足為M.
求的度數(shù);
求證:M是BE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進(jìn)甲、乙兩種商品共1000件,其進(jìn)價和售價如下表所示:
甲 | 乙 | |
進(jìn)價(元/件) | 15 | 35 |
售價(元/件) | 18 | 44 |
(1)若商店計(jì)劃銷售完這批商品后能獲利4200元,則甲、乙兩種商品應(yīng)分別購進(jìn)多少件;
(2)若該商店銷售完這批商品后獲利要多于5000元,則至少應(yīng)購進(jìn)乙種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,垂足分別為D,F,試說明:請補(bǔ)充說明過程,并在括號內(nèi)填上理由
解:(已知)
( )
( )
( )
(已知)
( )
( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】防疫期間的某天上午9:00,社區(qū)工作人員小孫從社區(qū)辦公室出發(fā),上門為本社區(qū)兩戶隔離人員家庭送生活用品,同時了解隔離人員的健康狀況,她先去了距離社區(qū)較近的張家,稍作停留簡單詢問了情況后,又去了稍遠(yuǎn)一點(diǎn)的李家,這家人口較多,了解情況時間稍長一些,由于社區(qū)還有其它事情等待處理,結(jié)束工作后她快速返回社區(qū)辦公室.已知小孫距離社區(qū)辦公室的距離(米)與離開辦公室的時間(分)之間的關(guān)系如圖所示.請根據(jù)圖象回答下列問題:
(1)圖中點(diǎn)表示的意義是什么?
(2)小孫從李家出來后步行的速度是多少?
(3)小孫在李家停留了幾分鐘?小孫幾點(diǎn)回到社區(qū)辦公室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要個小立方塊.最終搭成的長方體的表面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:
如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關(guān)系,得出結(jié)論;
結(jié)論:DM、MN的關(guān)系是: ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度建立如圖所示的平面直角坐標(biāo)系,的頂點(diǎn)均為格點(diǎn),把向左平移5個單位長度,再向下平移2個單位長度,得到.
(1)在圖中畫出;
(2)點(diǎn)在軸上,且與的面積相等,則點(diǎn)的坐標(biāo)為 ;
(3)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整數(shù)點(diǎn),在第一象限中的整數(shù)點(diǎn)滿足,直接寫出整數(shù)點(diǎn)的所有可能坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com