【題目】下列計算正確的是(
A.2a﹣a=2
B.m6÷m2=m3
C.x2010+x2010=2x2010
D.t2﹣t3=t6

【答案】C
【解析】解:A、合并同類項系數(shù)相加字母及指數(shù)不變,故A錯誤;
B、同底數(shù)冪的除法底數(shù)不變指數(shù)相減,故B錯誤
C、合并同類項系數(shù)相加字母及指數(shù)不變,故C正確;
D、合并同類項系數(shù)相加字母及指數(shù)不變,故D錯誤;
故選:C.
【考點精析】關于本題考查的同底數(shù)冪的除法,需要了解同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)

(1)求拋物線的解析式;

(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.

(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,①直接寫出O、P、A三點坐標;

②求拋物線L的解析式;

(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網(wǎng)格中每個小正方形的邊長是1個單位長度).

(1)△A1B1C1是△ABC繞點 逆時針旋轉 度得到的,B1的坐標是 ;

(2)求出線段AC旋轉過程中所掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,G是CD上一點,延長BC到E,使CE=CG,連接BG并延長交DE于F.

(1)求證:△BCG≌△DCE;
(2)將△DCE繞點D順時針旋轉90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請判斷下列問題中,哪些是反比例函數(shù),并說明你的依據(jù).
(1)三角形的底邊一定時,它的面積和這個底邊上的高;
(2)梯形的面積一定時,它的中位線與高;
(3)當矩形的周長一定時,該矩形的長與寬.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的兩個頂點A,B的坐標分別為(﹣2,0),(﹣1,0),BC⊥x軸,將△ABC以y軸為對稱軸作軸對稱變換,得到△A′B′C′(A和A′,B和B′,C和C′分別是對應頂點),直線y=x+b經(jīng)過點A,C′,則點C′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班10名同學在某次“1分鐘仰臥起坐”的測試中,成績如下(單位:次):39,45,40,44,37,39,46,40,41,39,那么這組數(shù)據(jù)的眾數(shù)、中位數(shù)分別是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù))的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②;③ac﹣b+1=0;④OAOB=

其中正確結論的個數(shù)是(

A.4 B.3 C.2 D.1

查看答案和解析>>

同步練習冊答案