【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積( 。
A. 由小到大 B. 由大到小 C. 不變 D. 先由小到大,后由大到小
【答案】C
【解析】試題分析:作DM⊥AC于M,DN⊥BC于N,構(gòu)造正方形DMCN,利用正方形和等腰直角三角形的性質(zhì),通過(guò)證明△DMG≌△DNH,把△DHN補(bǔ)到△DNG的位置,得到四邊形DGCH的面積=正方形DMCN的面積,于是得到陰影部分的面積=扇形的面積﹣正方形DMCN的面積,即為定值.
試題解析:解:作DM⊥AC于M,DN⊥BC于N,連接DC,
∵CA=CB,∠ACB=90°,
∴∠A=∠B=45°,
DM=AD=AB,DN=BD=AB,
∴DM=DN,
∴四邊形DNCN是正方形,
∴∠MDN=90°,
∴∠MDG=90°﹣∠GDN,
∵∠EDF=90°,
∴∠NDH=90°﹣∠GDN,
∴∠MDG=∠NDH,
在△DMG和△DNH中,
,
∴△DMG≌△DNH,
∴四邊形DGCH的面積=正方形DMCN的面積,
∵正方形DMCN的面積=DM2=AB2,
∴四邊形DGCH的面積=,
∵扇形FDE的面積==,
∴陰影部分的面積=扇形面積﹣四邊形DGCH的面積=(定值),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣4,4)關(guān)于x軸的對(duì)稱點(diǎn)B的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段a、b。
求作:(1)Rt△ABC,使
(2)△ABC的角平分線CD和經(jīng)過(guò)點(diǎn)A、C、D的⊙O.(作CD和⊙O不要求寫(xiě)作法,但要保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,E為BC延長(zhǎng)線上一點(diǎn),∠A=50°,則∠DCE的度數(shù)為( )
A. 40° B. 50° C. 60° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一塊三角板ABC的直角頂點(diǎn)C放在直尺的一邊PQ上,直尺的另一邊MN與三角板的兩邊AC、BC分別交于兩點(diǎn)E、D,且AD為∠BAC的平分線,∠B=300 , ∠ADE=150.
(1)求∠BDN的度數(shù);
(2)求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用代數(shù)式表示“2m與5的差”為( )
A. 2m-5
B. 5-2m
C. 2(m-5)
D. 2(5-m)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com