【題目】如圖,已知線段a、b。
求作:(1)Rt△ABC,使
(2)△ABC的角平分線CD和經(jīng)過點(diǎn)A、C、D的⊙O.(作CD和⊙O不要求寫作法,但要保留作圖痕跡)
【答案】見解析
【解析】試題分析:(1)先作兩條互相垂直的直線,作出直角,確定直角頂點(diǎn)C,然后在以C為頂點(diǎn)的兩條射線上截取CB=a,CA=b,連接AB即可得到所求作的直角三角形;
(2)①以C為圓心,任意長為半徑作弧交CA、CB于兩點(diǎn),以這兩點(diǎn)為圓心,大于兩點(diǎn)間距離的一半為半徑作弧,兩弧交于一點(diǎn)(設(shè)此點(diǎn)為P),連接CP,CP與AB的交點(diǎn)即為點(diǎn)D,CD就是要求作的角平分線;
②作△ACD任意兩邊的垂直平分線,兩條垂直平分線的交點(diǎn)即為圓心O,以O為圓心,OA為半徑作圓,⊙O即為所求作的圓.
試題解析:
(1)①作直線垂足為C;
②分別截取CB = a,CA = b;
③連結(jié)AB,則△ABC為所求作的三角形;
(2)正確作出CD,正確作出⊙O.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠1=50°5′,∠2=50.5°,則∠1與∠2的大小關(guān)系是( )
A.∠1=∠2
B.∠1>∠2
C.∠1<∠2
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.
(1)試確定當(dāng)CP=3時(shí),點(diǎn)E的位置;
(2)若設(shè)CP=x,BE=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB= ,點(diǎn)E、F分別在BC、CD上,且∠BAE=30°,∠DAF=15度.
(1)求證:DF+BE=EF;
(2)求∠EFC的度數(shù);
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積( )
A. 由小到大 B. 由大到小 C. 不變 D. 先由小到大,后由大到小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:①有公共頂點(diǎn)且相等的角是對頂角;②直線外一點(diǎn)到這條直線的垂線段,叫做點(diǎn)到直線的距離;③互為鄰補(bǔ)角的兩個(gè)角的平分線互相垂直;④經(jīng)過一點(diǎn)有且只有一條直線與已知直線平行.其中真命題的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi),為更好地決策,自來水公司隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)此次抽樣調(diào)查的樣本容量是________;
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com