【題目】在△ABC中,AD是BC邊上的高,AE是角平分線,∠B=30°,∠C=70°,求∠CAD和∠DAE的度數(shù).
【答案】∠CAD=20°, ∠DAE=20°
【解析】
在Rt△ACD中,利用直角三角形兩銳角互余即可求出∠CAD;
根據(jù)三角形的內(nèi)角和等于180°列式求出∠BAC,再根據(jù)角平分線的定義求出∠CAE,然后列式計(jì)算即可求出∠DAE.
解:∵AD是BC邊上的高
∴∠ADC=90°
在Rt△ADC中,∠C=70°
∴∠CAD=90°-∠C=90°-70°=20°
在△ABC中
∵∠B=30°,∠C=70°
∴∠BAC=180°-∠B-∠C=180°-30°-70°=80°
∵AE平分∠BAC
∴∠CAE=∠BAC=×80°=40°
∴∠DAE=∠CAE﹣∠CAD=40°﹣20°=20°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電商場(chǎng)計(jì)劃用9萬元從生產(chǎn)廠家購進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.
(1)若家電商場(chǎng)同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?
(2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)時(shí),∠A與∠1+∠2之間有始終不變的關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
閱讀理解:數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:
在數(shù)軸上,有理數(shù)3與1對(duì)應(yīng)的兩點(diǎn)之間的距離為;
在數(shù)軸上,有理數(shù)3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為;
在數(shù)軸上,有理數(shù)-3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為.
解決問題:如圖所示,已知點(diǎn)表示的數(shù)為-3,點(diǎn)表示的數(shù)為-1,點(diǎn)表示的數(shù)為2.
(1)點(diǎn)和點(diǎn)之間的距離為______.
(2)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______;當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______.
(3)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,點(diǎn)在點(diǎn)和點(diǎn)之間,點(diǎn)和點(diǎn)之間的距離表示為,點(diǎn)和點(diǎn)之間的距離表示為,求(用含的代數(shù)式表示并進(jìn)行化簡(jiǎn))
(4)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為-2,將點(diǎn)向右移動(dòng)19個(gè)單位長(zhǎng)度,再向左移動(dòng)23個(gè)單位長(zhǎng)度終點(diǎn)為,那么,兩點(diǎn)之間的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點(diǎn)A在第一象限,延長(zhǎng)AB交y軸負(fù)半軸于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使AE=AC,雙曲線y= (x>0)的圖象過點(diǎn)E.若△BCD的面積為2 ,則k的值為( )
A.4
B.4
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方形紙片ABCD,點(diǎn)E在邊AB上,點(diǎn)F、G在邊CD上,連接EF、EG.將∠BEG對(duì)折,點(diǎn)B落在直線EG上的點(diǎn)B′處,得折痕EM;將∠AEF對(duì)折,點(diǎn)A落在直線EF上的點(diǎn)A′處,得折痕EN.
(1)如圖1,若點(diǎn)F與點(diǎn)G重合,求∠MEN的度數(shù);
(2)如圖2,若點(diǎn)G在點(diǎn)F的右側(cè),且∠FEG=30°,求∠MEN的度數(shù);
(3)若∠MEN=α,請(qǐng)直接用含α的式子表示∠FEG的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)B在線段AC上,點(diǎn)D在線段AB上.
(1)如圖1,若AB=6cm,BC=4cm,D為線段AC的中點(diǎn),求線段DB的長(zhǎng)度;
(2)如圖2,若BD=AB=CD,E為線段AB的中點(diǎn),EC=12cm,求線段AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)為.
(1)畫出關(guān)于軸對(duì)稱的,并寫出點(diǎn)的坐標(biāo) .
(2)畫出繞原點(diǎn)旋轉(zhuǎn)后得到的,并寫出點(diǎn)的坐標(biāo) .
(3)是否為直角三角形?答 (填是或者不是).
(4)利用格點(diǎn)圖,畫出邊上的高,并求出的長(zhǎng), .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,DC切⊙O于點(diǎn)C,若∠A=25°,則∠D等于( )
A.20°
B.30°
C.40°
D.50°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com