【題目】如圖所示,在△ABC中,∠CAB=70°,現(xiàn)將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度后得到△AB′C′,連接BB′,若BB′∥AC′,則∠CAB′的度數(shù)為(
A.20°
B.25°
C.30°
D.40°

【答案】C
【解析】解:由旋轉(zhuǎn)的性質(zhì)得:∠C′AB′=∠CAB=70°,AB′=AB, ∴∠AB′B=∠ABB′,
∵BB′∥AC′,
∴∠AB′B=∠C′AB′=70°,
∴∠ABB′=70°,
∴∠BAB′=180°﹣70°﹣70°=40°,
∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°;
故選:C.
由旋轉(zhuǎn)的性質(zhì)得出∠C′AB′=∠CAB=70°,AB′=AB,得出∠AB′B=∠ABB′,由平行線得出∠AB′B=∠C′AB′=70°,由三角形內(nèi)角和求出∠BAB′,即可得出∠CAB′的度數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DABC內(nèi)一點(diǎn),CD平分ACB,BDCDA=ABD,若AC=5BC=3,則BD的長(zhǎng)為( 。

A. 1 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開(kāi)口向上,對(duì)稱軸為直線x=1,圖象經(jīng)過(guò)(3,0),下列結(jié)論中,正確的一項(xiàng)是(
A.abc<0
B.4ac﹣b2<0
C.a﹣b+c<0
D.2a+b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說(shuō)明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:

尺規(guī)作圖:作對(duì)角線等于已知線段的菱形.

已知:兩條線段a、b.

求作:菱形AMBN,使得其對(duì)角線分別等于b2a.

尺規(guī)作圖:作對(duì)角線等于已知線段的菱形.

已知:兩條線段a、b.

求作:菱形AMBN,使得其對(duì)角線分別等于b2a.

小軍的作法如下:

如圖

(1)畫(huà)一條線段AB等于b;

(2)分別以A、B為圓心,大于AB的長(zhǎng)為半徑,

在線段AB的上下各作兩條弧,兩弧相交于P、Q兩點(diǎn);

(3)作直線PQABO點(diǎn);

(4)O點(diǎn)為圓心,線段a的長(zhǎng)為半徑作兩條弧,交直線PQM、N兩點(diǎn),連接AM、AN、BM、BN.所以四邊形AMBN就是所求的菱形.

如圖

(1)畫(huà)一條線段AB等于b;

(2)分別以A、B為圓心,大于AB的長(zhǎng)為半徑,

在線段AB的上下各作兩條弧,兩弧相交于P、Q兩點(diǎn);

(3)作直線PQABO點(diǎn);

(4)O點(diǎn)為圓心,線段a的長(zhǎng)為半徑作兩條弧,交直線PQM、N兩點(diǎn),連接AM、AN、BM、BN.所以四邊形AMBN就是所求的菱形.

老師說(shuō):小軍的作法正確.

該上面尺規(guī)作圖作出菱形AMBN的依據(jù)是_______________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=8,BC=4.在AD上取一點(diǎn)E,AE=1,點(diǎn)FAB邊上的一個(gè)動(dòng)點(diǎn),以EF為一邊作菱形EFMN,使點(diǎn)N落在CD邊上,點(diǎn)M落在矩形ABCD內(nèi)或其邊上.若AF=x,BFM的面積為S.

(1)當(dāng)四邊形EFMN是正方形時(shí),求x的值;

(2)當(dāng)四邊形EFMN是菱形時(shí),求Sx的函數(shù)關(guān)系式;

(3)當(dāng)x= 時(shí),BFM的面積S最大;當(dāng)x= 時(shí),BFM的面積S最小;

(4)BFM的面積S由最大變?yōu)樽钚〉倪^(guò)程中,請(qǐng)直接寫(xiě)出點(diǎn)M運(yùn)動(dòng)的路線長(zhǎng):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是求作∠AOB的角平分線的尺規(guī)作圖過(guò)程.

已知:如圖,鈍角∠AOB.

求作:∠AOB的角平分線.

作法:

①在OAOB上,分別截取OD、OE,使OD=OE;

②分別以D、E為圓心,大于DE的長(zhǎng)為半徑作弧,在∠AOB內(nèi),兩弧交于點(diǎn)C;

③作射線OC.

所以射線OC就是所求作的∠AOB的角平分線.

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列兩則材料:

材料一:我們可以將任意三位數(shù)記為(其中a,b,c分別表示該數(shù)百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字,且a≠0),顯然=100a+10b+c.

材料二:若一個(gè)三位數(shù)的百位數(shù)字、十位數(shù)字和個(gè)位數(shù)字均不為0,則稱之為原始數(shù),比如123就是一個(gè)原始數(shù),將原始數(shù)的三個(gè)數(shù)位上的數(shù)字交換順序,可產(chǎn)生出5個(gè)原始數(shù),比如由123可以產(chǎn)生出132,213,231,312,3215個(gè)原始數(shù).將這6個(gè)數(shù)相加,得到的和1332稱為由原始數(shù)123生成的終止數(shù).利用材料解決下列問(wèn)題:

(1)分別求出由下列兩個(gè)原始數(shù)生成的終止數(shù):243,537;

(2)若一個(gè)原始數(shù)的終止數(shù)是另一個(gè)原始數(shù)的終止數(shù)的3倍,分別求出所有滿足條件的這兩個(gè)原始數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校小組利用暑假中前40天參加社會(huì)實(shí)踐活動(dòng),參與了一家網(wǎng)上書(shū)店經(jīng)營(yíng),了解到一種成本每本20元的書(shū)在x天銷售量P=50﹣x.在第x天的售價(jià)每本y元,y與x的關(guān)系如圖所示. 已知當(dāng)社會(huì)實(shí)踐活動(dòng)時(shí)間超過(guò)一半后.y=20+
(1)請(qǐng)求出當(dāng)1≤x≤20時(shí),y與x的函數(shù)關(guān)系式,并求出第12天此書(shū)的銷售單價(jià);
(2)這40天中該網(wǎng)點(diǎn)銷售此書(shū)第幾天獲得的利潤(rùn)最大?最大的利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案