【題目】如圖,正三角形和正方形的面積分別為10,6,兩陰影部分的面積分別為a,b(a>b),則(a﹣b)等于

【答案】4
【解析】解:設(shè)重疊部分的面積為x,
則正三角形的面積為:a+x=10①,
正方形的面積為:b+x=6②,
①﹣②得,a﹣b=4.
所以答案是:4.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對正方形的性質(zhì)的理解,了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)部統(tǒng)計(jì)了15名工人某月的加工零件數(shù):

每人加工零件數(shù)

540

450

300

240

210

120

人數(shù)

1

1

2

6

3

2

(1)求出這15人該月加工零件數(shù)的平均數(shù)并直接寫出中位數(shù)和眾數(shù);

(2)若生產(chǎn)部領(lǐng)導(dǎo)把每位工人的月加工零件數(shù)定為260件,你認(rèn)為合理否,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙每個(gè)小方格是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(a,b)D(1,4).

(1)描出A、B、C、D四點(diǎn)的位置.如圖,則a=  ;b=  ;

(2)四邊形ABCD的面積是  ;(直接寫出結(jié)果)

(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A'B'C'D',在圖中畫出四邊形A'B'C'D',并寫出A'B'C'D'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.

通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.

證法1:如圖1,延長BCD,過CCE∥BA.

∵BA∥CE(作圖2所知),

∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯(cuò)角相等).

∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),

∴∠A+∠B+∠ACB=180°(等量代換).

如圖3,過BC上任一點(diǎn)F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位計(jì)劃用3天時(shí)間進(jìn)行設(shè)備檢修,安排小王,小李,小趙三位工程師各帶班一天,帶班順序是隨機(jī)確定的.
(1)請你寫出三天帶班順序的所有可能的結(jié)果;
(2)求小李和小趙恰好相鄰的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)中,有許多關(guān)系都是在不經(jīng)意間被發(fā)現(xiàn)的.當(dāng)然,沒有敏銳的觀察力是做不到的.?dāng)?shù)學(xué)家們往往是這樣來研究問題的:特值探究猜想歸納邏輯證明總結(jié)應(yīng)用.下面我們也來像數(shù)學(xué)家們那樣分四步找出這兩個(gè)代數(shù)式的關(guān)系:對于代數(shù)式

特值探究

當(dāng),時(shí),________;________

當(dāng),時(shí),________;________

猜想歸納:

觀察的結(jié)果,寫出的關(guān)系:________.

邏輯證明:如圖,邊長為的正方形紙片剪出一個(gè)邊長為的小正方形之后,剩余部分(即陰影部分)又剪拼成一個(gè)矩形(不重疊無縫隙),請你說說是如何用這個(gè)圖來得出中的關(guān)系?

總結(jié)應(yīng)用:利用你發(fā)現(xiàn)的關(guān)系,求:

①若,且,則________;

的值.(提示:你可能要用到公式

查看答案和解析>>

同步練習(xí)冊答案