【題目】如圖,在長為4x+3,寬為3x+5的長方形紙片中剪去兩個邊長分別為2x-1,x+2的正方形,求陰影部分的面積.

【答案】7x2+29x+10.

【解析】

分別求出長方形的面積以及兩個正方形的面積,再根據(jù)陰影部分的面積等于長方形的面積減去兩個正方形的面積列式進行計算即可.

因為長方形的面積為(4x+3)(3x+5),

邊長為-2x+1的正方形的面積為(-2x+1)2,

邊長為x+2的正方形的面積為(x+2)2

所以S陰影=(4x+3)(3x+5)-(-2x+1)2-(x+2)2

=12x2+20x+9x+15-(1-4x+4x2)-(x2+4x+4)

=12x2+29x+15-1+4x-4x2-x2-4x-4

=7x2+29x+10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】義烏國際小商品博覽會某志愿小組有五名翻譯,其中一名只會翻譯阿拉伯語,三名只會翻譯英語,還有一名兩種語言都會翻譯.若從中隨機挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在長度為1個單位的小正方形組成的網(wǎng)格中,點A、B、C在小正方形的頂點上.

(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;

(2)△ABC的面積為________;

(3)在直線l上找一點P,使PB+PC的長最短,則這個最短長度為________個單位長度.(在圖形中標出點P)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班去體育用品商店購買羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店說:“羽毛球拍和羽毛球都打9折優(yōu)惠”,乙商店說:“買一副羽毛球拍贈2只羽毛球”.

(1)該班如果買2副羽毛球拍和20只羽毛球,問在甲、乙兩家商店各需花多少錢?

(2)該班如果準備花90元錢全部用于買2副羽毛球拍和若干只羽毛球,請問到哪家商店購買更合算?

(3)該班如果必須買2副羽毛球拍,問當(dāng)買多少只羽毛球時到兩家商店購買同樣合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1cm,AC是對角線,AE平分∠BAC,EF⊥AC于F.
(1)求證:BE=EF.
(2)求tan∠EAF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上勻速行駛,下表記錄的是汽車在加滿油后油箱內(nèi)余油量y(升)與行駛時間x(時)之間的關(guān)系:

行駛時間x(時)

0

1

2

2.5

余油量y(升)

100

80

60

50

(1)小明分析上表中所給的數(shù)據(jù)發(fā)現(xiàn)x,y成一次函數(shù)關(guān)系,試求出它們之間的函數(shù)表達式(不要求寫出自變量的取值范圍);

(2)求汽車行駛4.2小時后,油箱內(nèi)余油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點E,連接DE,作EF⊥DE,交直線AB于點F.
(1)若點F與B重合,求CE的長;
(2)若點F在線段AB上,且AF=CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(x-2)-(4x-1)=4.

【答案】x=-.

【解析】

方程兩邊都乘以6去分母后,去括號,移項合并,將x系數(shù)化為1即可求出解.

去分母得:3(x-2)-2(4x-1)=24,

去括號得:3x-6-8x+2=24,

移項合并得:-5x=28,

解得:x=-.

【點睛】

此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,將x系數(shù)化為1,求出解.

型】解答
結(jié)束】
22

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

查看答案和解析>>

同步練習(xí)冊答案