【題目】將一個直角三角形紙片ABO放置在平面直角坐標系中,點 ,點B(0,1),點O(0,0).P是邊AB上的一點(點P不與點A,B重合),沿著OP折疊該紙片,得點A的對應(yīng)點A'.
(1)如圖①,當點A'在第一象限,且滿足A'B⊥OB時,求點A'的坐標;
(2)如圖②,當P為AB中點時,求A'B的長;
(3)當∠BPA'=30°時,求點P的坐標(直接寫出結(jié)果即可).
【答案】
(1)
解:∵點 ,點B(0,1),
∴OA= ,OB=1,
由折疊的性質(zhì)得:OA'=OA= ,
∵A'B⊥OB,
∴∠A'BO=90°,
在Rt△A'OB中,A'B= = ,
∴點A'的坐標為( ,1);
(2)
解:在Rt△ABO中,OA= ,OB=1,
∴AB= =2,
∵P是AB的中點,
∴AP=BP=1,OP= AB=1,
∴OB=OP=BP
∴△BOP是等邊三角形,
∴∠BOP=∠BPO=60°,
∴∠OPA=180°﹣∠BPO=120°,
由折疊的性質(zhì)得:∠OPA'=∠OPA=120°,PA'=PA=1,
∴∠BOP+∠OPA'=180°,
∴OB∥PA',
又∵OB=PA'=1,
∴四邊形OPA'B是平行四邊形,
∴A'B=OP=1;
(3)
解:設(shè)P(x,y),分兩種情況:
①如圖③所示:點A'在y軸上,
在△OPA'和△OPA中, ,
∴△OPA'≌△OPA(SSS),
∴∠A'OP=∠AOP= ∠AOB=45°,
∴點P在∠AOB的平分線上,
設(shè)直線AB的解析式為y=kx+b,
把點 ,點B(0,1)代入得: ,
解得: ,
∴直線AB的解析式為y=﹣ x+1,
∵P(x,y),
∴x=﹣ x+1,
解得:x= ,
∴P( , );
②如圖④所示:
由折疊的性質(zhì)得:∠A'=∠A=30°,OA'=OA,
∵∠BPA'=30°,
∴∠A'=∠A=∠BPA',
∴OA'∥AP,PA'∥OA,
∴四邊形OAPA'是菱形,
∴PA=OA= ,作PM⊥OA于M,如圖④所示:
∵∠A=30°,
∴PM= PA= ,
把y= 代入y=﹣ x+1得: =﹣ x+1,
解得:x= ,
∴P( , );
綜上所述:當∠BPA'=30°時,點P的坐標為( , )或( , ).
【解析】(1)由點A和B的坐標得出OA= ,OB=1,由折疊的性質(zhì)得:OA'=OA= ,由勾股定理求出A'B= = ,即可得出點A'的坐標為( ,1);(2)由勾股定理求出AB= =2,證出OB=OP=BP,得出△BOP是等邊三角形,得出∠BOP=∠BPO=60°,求出∠OPA=120°,由折疊的性質(zhì)得:∠OPA'=∠OPA=120°,PA'=PA=1,證出OB∥PA',得出四邊形OPA'B是平行四邊形,即可得出A'B=OP=1;(3)分兩種情況:①點A'在y軸上,由SSS證明△OPA'≌△OPA,得出∠A'OP=∠AOP= ∠AOB=45°,得出點P在∠AOB的平分線上,由待定系數(shù)法求出直線AB的解析式為y=﹣ x+1,即可得出點P的坐標;②由折疊的性質(zhì)得:∠A'=∠A=30°,OA'=OA,作出四邊形OAPA'是菱形,得出PA=OA= ,作PM⊥OA于M,由直角三角形的性質(zhì)求出PM= PA= ,把y= 代入y=﹣ x+1求出點P的縱坐標即可.
【考點精析】本題主要考查了勾股定理的概念和翻折變換(折疊問題)的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,坐標平面上,△ABC與△DEF全等,其中A、B、C的對應(yīng)頂點分別為D、E、F,且AB=BC=5.若A點的坐標為(﹣3,1),B、C兩點在直線y=﹣3上,D、E兩點在y軸上.
(1)在△ABC中,作AH、CK分別垂直BC、AB于H、K,求證:KC=HA;
(2)求F點到y(tǒng)軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax+bx-3(a≠0)與x軸交于點
A(-2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點M,使 : =5:2,求M點坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+3交y軸于點A,交反比例函數(shù)y= (k<0)的圖象于點D,y= (k<0)的圖象過矩形OABC的頂點B,矩形OABC的面積為4,連接OD.
(1)求反比例函數(shù)y= 的表達式;
(2)求△AOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(1)解不等式①,得;
(2)解不等式②,得;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將形狀、大小完全相同的兩個等腰三角形如圖所示放置,點D在AB邊上,△DEF繞點D旋轉(zhuǎn),腰DF和底邊DE分別交△CAB的兩腰CA,CB于M,N兩點,若CA=5,AB=6,AD:AB=1:3,則MD+ 的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象的頂點坐標是(2,1),并且經(jīng)過點(4,2),直線y= x+1與拋物線交于B,D兩點,以BD為直徑作圓,圓心為點C,圓C與直線m交于對稱軸右側(cè)的點M(t,1),直線m上每一點的縱坐標都等于1.
(1)求拋物線的解析式;
(2)證明:圓C與x軸相切;
(3)過點B作BE⊥m,垂足為E,再過點D作DF⊥m,垂足為F,求BE:MF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=﹣2x+1與反比例函數(shù)y= 的圖象有兩個交點A(﹣1,m)和B,過點A作AE⊥x軸,垂足為點E;過點B作BD⊥y軸,垂足為點D,且點D的坐標為(0,﹣2),連接DE.
(1)求k的值;
(2)求四邊形AEDB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com