【題目】(1)如圖甲,,與的關(guān)系是什么?并寫出推理過程;
(2)如圖乙,,直接寫出與的數(shù)量關(guān)系_______________________;
(3)如圖丙,,直接寫出與的數(shù)量關(guān)系_____________________.
【答案】(1)∠BEC=∠1+∠3,理由見解析;(2)∠2+∠4=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7
【解析】
(1)過點E作EF∥AB,如圖甲,根據(jù)平行公理的推論可得AB∥CD∥EF,然后根據(jù)平行線的性質(zhì)和角的和差可得結(jié)論;
(2)分別過點E,G,M,作EF∥AB,GH∥AB,MN∥AB,如圖乙,根據(jù)平行公理的推論可得AB∥CD∥EF∥GH∥MN,然后根據(jù)平行線的性質(zhì)和角的和差可得結(jié)論;
(3)分別過點E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,如圖丙,根據(jù)平行公理的推論可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行線的性質(zhì)和角的和差可得結(jié)論.
解:(1)∠BEC=∠1+∠3.
理由如下:過點E作EF∥AB,如圖甲,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=∠1,∠CEF=∠3,
∴∠BEC=∠BEF+∠CEF=∠1+∠3;
(2)分別過點E,G,M,作EF∥AB,GH∥AB,MN∥AB,如圖乙,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,
∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;
故答案為:∠2+∠4=∠1+∠3+∠5;
(3)分別過點E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,如圖丙,
∵AB∥CD,
∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,
∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,
∴∠2+∠4+∠6
=∠BEF+∠FEG+∠GMN+∠KMN+∠KPQ+∠QPC
=∠1+∠EGH+∠HGM+∠LKM+∠LKP+∠7
=∠1+∠3+∠5+∠7.
故答案為:∠2+∠4+∠6=∠1+∠3+∠5+∠7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,,,分別以,為邊作矩形,直線交于點,交直線于點.
(1)求直線的解析式及點的坐標(biāo).
(2)如圖2,為直線上一動點,點,點為直線上兩動點(在上,在下),滿足,當(dāng)最大時,求的最小值,并求出此時點的坐標(biāo).
(3)如圖3,將繞著點順時針旋轉(zhuǎn),記旋轉(zhuǎn)后的三角形為,線段所在的直線交直線于點(不與、重合),交軸于點,在平面內(nèi)是否存在一點,使得以四點形成的四邊形為菱形,若存在,請直接寫出點的坐標(biāo);若不存在,請說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD.
(1)在圖1中,若∠BCE=40°,∠ACF= ;
(2)在圖1中,若∠BCE=α,∠ACF= (用含α的式子表示);
(3)將圖1中的三角板ABC繞頂點C旋轉(zhuǎn)至圖2的位置,若∠BCE=150°,試求∠ACF與∠ACE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時,每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有一張菱形紙片ABCD,AC=8,BD=6.
請沿著AC剪一刀,把它分成兩部分,把剪開的兩部分拼成一個平行四邊形,在圖2中用實線畫出你所拼成的平行四邊形;若沿著BD剪開,請在圖3中用實線畫出拼成的平行四邊形.并直接寫出這兩個平行四邊形的周長.
沿著一條直線剪開,拼成與上述兩種都不全等的平行四邊形,請在圖4中用實線畫出拼成的平行四邊形.(注:上述所畫的平行四邊形都不能與原菱形全等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南縣農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.南縣農(nóng)業(yè)部門對2009年的油菜籽生產(chǎn)成本、市場價格、種植面積和產(chǎn)量等進(jìn)行了調(diào)查統(tǒng)計,并繪制了如下統(tǒng)計表與統(tǒng)計圖:請根據(jù)以上信息解答下列問題
(1)種植油菜每畝的種子成本是多少元?
(2)農(nóng)民冬種油菜每畝獲利多少元?
(3)2009年南縣全縣農(nóng)民冬種油菜的總獲利多少元?(結(jié)果用科學(xué)記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 不帶根號的數(shù)不是無理數(shù)
B. 的立方根是±2
C. 絕對值等于的實數(shù)是
D. 每個實數(shù)都對應(yīng)數(shù)軸上一個點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com