【題目】希望中學(xué)八年級學(xué)生開展踢毽子活動,每班派5名學(xué)生參加,按團體總分排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100)為優(yōu)秀下表是成績較好的甲班和乙班5名學(xué)生的比賽成績(單位:個)

1號

2號

3號

4號

5號

總數(shù)

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計發(fā)現(xiàn)兩班5名學(xué)生踢毽子的總個數(shù)相等此時有學(xué)生建議,可以通過考查數(shù)據(jù)中的其它信息作為參考請你回答下列問題:

(1)求兩班比賽數(shù)據(jù)的中位數(shù);

(2)計算兩班比賽數(shù)據(jù)的方差,并比較哪一個;

(3)根據(jù)以上信息,你認(rèn)為應(yīng)該把冠軍獎狀發(fā)給哪一個班?簡述理由.

【答案】(1)甲班的中位數(shù)為100,乙班為97;(2)甲班的方差為,乙班為;;(3)冠軍應(yīng)發(fā)給甲,理由見解析.

【解析】

試題分析:(1)中位數(shù)就是一組數(shù)據(jù)中先把所有數(shù)據(jù)按從大到小或從小到大的順序排列起來,如果是奇數(shù)個時,就是中間的那一個數(shù),如果是偶數(shù)個時,就是中間兩個數(shù)的平均數(shù).

(2)方差就是就是反映一組數(shù)據(jù)波動大小的幅度,方差大,波動大,方差小則波動。

(3)根據(jù)計算出來的統(tǒng)計量的意義分析判斷.

(1)兩班5名學(xué)生踢毽子個數(shù)近大小排列為

甲班

89

98

100

103

110

乙班

89

95

97

100

119

甲班的中位數(shù)為100,乙班為97.

(2)甲的平均數(shù)為:100+98+110+89+103)÷5=100,

;

乙的平均數(shù)為:(89+100+95+119+97)÷5=100,

.

.

(3)甲班的中位數(shù)比乙班高;甲班的方差比乙班低,比較穩(wěn)定,綜合評定甲班比較好,

冠軍應(yīng)發(fā)給甲.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于兩個不相等的有理數(shù)a,b,我們規(guī)定符號表示a,b中的較大值,如,,請解答下列問題:

(1)_______________;

(2)如果,求x的取值范圍;

(3)如果,求x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,ADCEBECE,垂足分別為D,E

1)證明:BCE≌△CAD

2)若AD=25cm,BE=8cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EC∥AB,∠EDA=∠ABF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項,為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調(diào)查了 名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于 度;

4)若該學(xué)校有1500人,請你估計該學(xué)校選擇足球項目的學(xué)生人數(shù)約是 人。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形ABCD的一邊BC與直角邊分別是2和4的Rt△GEF的一邊GF重合.正方形ABCD以每秒1個單位長度的速度沿GE向右勻速運動,當(dāng)點A和點E重合時正方形停止運動.設(shè)正方形的運動時間為t秒,正方形ABCD與Rt△GEF重疊部分面積為S,則S關(guān)于t的函數(shù)圖象為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在“蜀南竹!笔召徝,直接銷售,每噸可獲利100元,進行粗加工,每天可加工8噸,每噸可獲利800元;如果對毛竹進行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷售.為此企業(yè)廠長召集職工開會,讓職工討論如何加工銷售更合算.

甲說:將毛竹全部進行粗加工后銷售;

乙說:30天都進行精加工,未加工的毛竹直接銷售;

丙說:30天中可用幾天粗加工,再用幾天精加工后銷售;

請問廠長應(yīng)采用哪位說的方案做,獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E、F在對角線BD上,且BFDE

求證:四邊形AECF是菱形.

AB2,BF1,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABCD,分別以AB,AD為邊分別向外作等邊三角形ABE和等邊三角形ADF,延長CBAE于點G,G在點A,E之間,連接CE,CF,EF,則下列結(jié)論不一定正確的是(  )

A. CDF≌△EBC B. CDF=EAF

C. ECF是等邊三角形 D. CGAE

查看答案和解析>>

同步練習(xí)冊答案