【題目】希望中學(xué)八年級學(xué)生開展踢毽子活動,每班派5名學(xué)生參加,按團體總分排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100)為優(yōu)秀.下表是成績較好的甲班和乙班5名學(xué)生的比賽成績(單位:個)
1號 | 2號 | 3號 | 4號 | 5號 | 總數(shù) | |
甲班 | 100 | 98 | 110 | 89 | 103 | 500 |
乙班 | 89 | 100 | 95 | 119 | 97 | 500 |
經(jīng)統(tǒng)計發(fā)現(xiàn)兩班5名學(xué)生踢毽子的總個數(shù)相等.此時有學(xué)生建議,可以通過考查數(shù)據(jù)中的其它信息作為參考.請你回答下列問題:
(1)求兩班比賽數(shù)據(jù)的中位數(shù);
(2)計算兩班比賽數(shù)據(jù)的方差,并比較哪一個;
(3)根據(jù)以上信息,你認(rèn)為應(yīng)該把冠軍獎狀發(fā)給哪一個班?簡述理由.
【答案】(1)甲班的中位數(shù)為100,乙班為97;(2)甲班的方差為,乙班為;;(3)冠軍應(yīng)發(fā)給甲,理由見解析.
【解析】
試題分析:(1)中位數(shù)就是一組數(shù)據(jù)中先把所有數(shù)據(jù)按從大到小或從小到大的順序排列起來,如果是奇數(shù)個時,就是中間的那一個數(shù),如果是偶數(shù)個時,就是中間兩個數(shù)的平均數(shù).
(2)方差就是就是反映一組數(shù)據(jù)波動大小的幅度,方差大,波動大,方差小則波動。
(3)根據(jù)計算出來的統(tǒng)計量的意義分析判斷.
(1)兩班5名學(xué)生踢毽子個數(shù)近大小排列為
甲班 | 89 | 98 | 100 | 103 | 110 |
乙班 | 89 | 95 | 97 | 100 | 119 |
∴甲班的中位數(shù)為100,乙班為97.
(2)甲的平均數(shù)為:100+98+110+89+103)÷5=100,
;
乙的平均數(shù)為:(89+100+95+119+97)÷5=100,
.
∵;∴.
(3)∵甲班的中位數(shù)比乙班高;甲班的方差比乙班低,比較穩(wěn)定,綜合評定甲班比較好,
∴冠軍應(yīng)發(fā)給甲.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于兩個不相等的有理數(shù)a,b,我們規(guī)定符號表示a,b中的較大值,如,,請解答下列問題:
(1)_______________;
(2)如果,求x的取值范圍;
(3)如果,求x的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.
(1)證明:△BCE≌△CAD;
(2)若AD=25cm,BE=8cm,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項,為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:
(1)這次活動一共調(diào)查了 名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于 度;
(4)若該學(xué)校有1500人,請你估計該學(xué)校選擇足球項目的學(xué)生人數(shù)約是 人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形ABCD的一邊BC與直角邊分別是2和4的Rt△GEF的一邊GF重合.正方形ABCD以每秒1個單位長度的速度沿GE向右勻速運動,當(dāng)點A和點E重合時正方形停止運動.設(shè)正方形的運動時間為t秒,正方形ABCD與Rt△GEF重疊部分面積為S,則S關(guān)于t的函數(shù)圖象為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“蜀南竹!笔召徝,直接銷售,每噸可獲利100元,進行粗加工,每天可加工8噸,每噸可獲利800元;如果對毛竹進行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷售.為此企業(yè)廠長召集職工開會,讓職工討論如何加工銷售更合算.
甲說:將毛竹全部進行粗加工后銷售;
乙說:30天都進行精加工,未加工的毛竹直接銷售;
丙說:30天中可用幾天粗加工,再用幾天精加工后銷售;
請問廠長應(yīng)采用哪位說的方案做,獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F在對角線BD上,且BF=DE.
⑴求證:四邊形AECF是菱形.
⑵若AB=2,BF=1,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在ABCD中,分別以AB,AD為邊分別向外作等邊三角形ABE和等邊三角形ADF,延長CB交AE于點G,點G在點A,E之間,連接CE,CF,EF,則下列結(jié)論不一定正確的是( )
A. △CDF≌△EBC B. ∠CDF=∠EAF
C. △ECF是等邊三角形 D. CG⊥AE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com