【題目】當(dāng)x<0時,反比例函數(shù) 的圖像( )
A.在第二象限內(nèi),y隨x的增大而減小
B.在第二象限內(nèi),y隨x的增大而增大
C.在第三象限內(nèi),y隨x的增大而減小
D.在第三象限內(nèi),y隨x的增大而增大
【答案】B
【解析】解:A、根據(jù)反比例函數(shù)的性質(zhì)當(dāng)x<0時,反比例函數(shù)y=﹣ ,圖像在第二象限內(nèi),y隨x的增大而增大,故本選項錯誤; B、故本選項正確;
C、圖像不在第三象限內(nèi),故本選項錯誤;
D、圖像不在第三象限內(nèi),故本選項錯誤.
故選B.
【考點精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=3,點P是邊AD上的一點,聯(lián)結(jié)BP,將△ABP沿著BP所在直線翻折得到△EBP,點A落在點E處,邊BE與邊CD相交于點G,如果CG=2DG,那么DP的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx與x軸的另一個交點為A.點P在一次函數(shù)y=2x﹣2m的圖象上,PH⊥x軸于H,直線AP交y軸于點C,點P的橫坐標(biāo)為1.(點C不與點O重合)
(1)如圖1,當(dāng)m=﹣1時,求點P的坐標(biāo).
(2)如圖2,當(dāng) 時,問m為何值時 ?
(3)是否存在m,使 ?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設(shè)點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,教室窗戶的高度AF為2.5米,遮陽蓬外端一點D到窗戶上椽的距離為AD,某一時刻太陽光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,PE為窗戶的一部分在教室地面所形成的影子且長為 米,試求AD的長度.(結(jié)果帶根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進(jìn)一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件60元,不低于每件30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當(dāng)x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)求該服裝店銷售這批秋衣日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com