【題目】某公司開發(fā)一種新的節(jié)能產(chǎn)品,工作人員對銷售情況進行了調(diào)查,圖中折線表示月銷售量(件)與銷售時間(天)之間的函數(shù)關(guān)系,已知線段表示函數(shù)關(guān)系中,時間每增加天,月銷售量減少件,求與間的函數(shù)表達式.
【答案】.
【解析】
由時間每增加1天日銷售量減少5件結(jié)合第18天的日銷售量為360件,即可求出第19天的日銷售量,再根據(jù)點的坐標(biāo),利用待定系數(shù)法可求出直線OD、DE的函數(shù)關(guān)系式,即可找出y與x之間的函數(shù)關(guān)系式;
當(dāng)時,
設(shè)直線OD的解析式為
將代入得,
∴,
∴直線OD的解析式為:,
當(dāng)時,
根據(jù)題意“時間每增加天,月銷售量減少件”,則第19天的日銷售量為:360-5=355,
設(shè)直線DE的解析式為,
將,代入得,
解得:,
∴直線DE的解析式為,
∴與間的函數(shù)表達式為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,對角線AC、BD交于點O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果某點的橫坐標(biāo)與縱坐標(biāo)的和為10,則稱此點為“合適點”例如,點(1,9),(﹣2019,2029)…都是“合適點”.
(1)求函數(shù)y=2x+1的圖象上的“合適點”的坐標(biāo);
(2)求二次函數(shù)y=x2﹣5x﹣2的圖象上的兩個“合適點”A,B之間線段的長;
(3)若二次函數(shù)y=ax2+4x+c的圖象上有且只有一個合適點”,其坐標(biāo)為(4,6),求二次函數(shù)y=ax2+4x+c的表達式;
(4)我們將拋物線y=2(x﹣n)2﹣3在x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現(xiàn)將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當(dāng)圖象G上恰有兩個“合適點”時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=44°,點D點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
(3)若△ACE的外心在其內(nèi)部時,求∠BDA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-2,3),B(-4,1),C(-1,2).
(1)畫出以點O為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A'B'C'
(2)求點C在旋轉(zhuǎn)過程中所經(jīng)過的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半徑為2,則圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:同時經(jīng)過x軸上兩點A,B(m≠n)的兩條拋物線稱為同弦拋物線.如拋物線C1:與拋物線C2:是都經(jīng)過,的同弦拋物線.
(1)引進一個字母,表達出拋物線C1的所有同弦拋物線;
(2)判斷拋物線C3:與拋物線C1是否為同弦拋物線,并說明理由;
(3)已知拋物線C4是C1的同弦拋物線,且過點,求拋物線C對應(yīng)函數(shù)的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°。
(1)求∠MCD的度數(shù);
(2)求攝像頭下端點F到地面AB的距離。(精確到百分位)
(參考數(shù)據(jù);sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com