【題目】對于平面直角坐標系中的點P和圖形M,給出如下定義:Q為圖形M上任意一點,如果兩點間的距離有最大值,那么稱這個最大值為點P與圖形M間的開距離,記作.已知直線x軸交于點A,與y軸交于點B,的半徑為1

1)若,

①求的值;

②若點C在直線上,求的最小值;

2)以點A為中心,將線段順時針旋轉得到,點E在線段組成的圖形上,若對于任意點E,總有,直接寫出b的取值范圍.

【答案】1)①3;②;(2

【解析】

1)①直接利用圓外一點到圓上的一點的最大距離,即可得出結論;
②先判斷出OCAB時,OC最短,即可得出結論;
2、當b0時,當直線AB與⊙O相切時,dE,⊙O)最小,當點E恰好在點D時,dE,⊙O)最大,即可得出結論;
、當b0時,同的方法即可得結論.

解:(1)①根據(jù)題意可知

②如圖,過點O于點C,此時取得最小值.

直線x軸交于點A

的最小值為

2

、當b0時,如圖2,


針對于直線y=x+bb≠0),
x=0,則y=b,
B0,b),
OB=b,
y=0,則0=x+b,
x=b,
Ab,0),
OA=b,
AB=2b,tanOAB==
∴∠OAB=30°,
由旋轉知,AD=AB=2b,∠BAD=120°,

則有∠OAD=90°,
連接OD,
OD==b,
∵⊙O的半徑為1,
∴當線段AB與⊙O相切時,dE,⊙O最小=2,
同(1)的方法得,OF==1,
b=(舍去負值),
對于任意點E,總有2≤dE,⊙O)<6
b6-1,
b,
≤b;
、當b0時,如圖3,


的方法得,-b≤-,
綜上述,-b≤-≤b

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結論:①∠AED=CED;②OE=OD;③BH=HF;④BCCF=2HE.其中正確的結論有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,EAD的中點,過點ABC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:DBC的中點;

2)若BAAC,試判斷四邊形AFBD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形中,,點是對角線上一動點,將線段繞點順時針旋轉120°,連接,連接并延長,分別交于點

1)求證:

2)已知,若的最小值為,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的過直線外一點作這條直線的平行線的尺規(guī)作圖過程.

已知:直線l及直線l外一點P

求作:直線,使得

作法:如圖,

①任意取一點K,使點K和點P在直線l的兩旁;

②以P為圓心,長為半徑畫弧,交l于點,連接;

③分別以點為圓心,以長為半徑畫弧,兩弧相交于點Q(點Q和點A在直線的兩旁);

④作直線

所以直線就是所求作的直線.

根據(jù)小東設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:連接,

______,______,

四邊形是平行四邊形(__________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年初,新冠肺炎肆虐全球.我國政府和人民采取了積極有效的防疫措施,疫情在我國得到了有效控制.小明為復學到藥店購買口罩和一次性醫(yī)用口罩.已知購買口罩和個一次性醫(yī)用口罩共需元;購買口罩和個一次性醫(yī)用罩共需元.

1)求口罩與一次性醫(yī)用口罩的單價;

2)小明準備購買口罩和一次性醫(yī)用口罩共個,且口罩的數(shù)量不少于一次性醫(yī)用口罩數(shù)量的.請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于點C,連接AD,OC.若△ABO的周長為,AD=2,則△ACO的面積為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點(點在點的左邊),與軸交于點,點是拋物線的頂點.

1)求、、三點的坐標;

2)連接,,若點為拋物線上一動點,設點的橫坐標為,當時,求的值(點不與點重合);

3)連接,將沿軸正方向平移,設移動距離為,當點和點重合時,停止運動,設運動過程中重疊部分的面積為,請直接寫出之間的函數(shù)關系式,并寫出相應自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料

材料1:若一個自然數(shù),從左到右各位數(shù)上的數(shù)字與從右到左各位數(shù)上的數(shù)字對應相同,則稱為對稱數(shù)”.

材料2:對于一個三位自然數(shù),將它各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字,得到三個新的數(shù)字,,我們對自然數(shù)規(guī)定一個運算:.

例如:是一個三位的對稱數(shù),其各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字分別是:2、82.

.

請解答:

1)一個三位的對稱數(shù),若,請直接寫出的所有值, ;

2)已知兩個三位對稱數(shù),若能被11整數(shù),求的所有值.

查看答案和解析>>

同步練習冊答案