【題目】如圖,將一張正方形紙片,依次沿著折痕(其中)向上翻折兩次,形成“小船”的圖樣.若,四邊形的周長差為,則正方形的周長為______

【答案】16

【解析】

由正方形的性質(zhì)得出△ABD是等腰直角三角形,由EFBD,得出△AEF是等腰直角三角形,由折疊的性質(zhì)得△AHG是等腰直角三角形,△BEH與△DFG是全等的等腰直角三角形,則GF=DF=BE=EH=1,設(shè)AB=x,則BD=x,EF=x-1),AH=AG=x-2HG=x-2),由四邊形BEFD與△AHG的周長差為5-2列出方程解得x=4,即可得出結(jié)果.

∵四邊形ABCD是正方形,

∴△ABD是等腰直角三角形,

EFBD,

∴△AEF是等腰直角三角形,

由折疊的性質(zhì)得:△AHG是等腰直角三角形,△BEH與△DFG是全等的等腰直角三角形,

GF=DF=BE=EH=1,

設(shè)AB=x,

BD=x,EF=x-1),AH=AG=x-2HG=x-2),

∵四邊形BEFD與△AHG的周長差為5-2,

x+x-1+2-[2x-2+x-2]=5-2,

解得:x=4,

∴正方形ABCD的周長為:4×4=16

故答案為:16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,

1)求點(diǎn)C到直線AB的距離;

2)求海警船到達(dá)事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是一張等腰直角三角形板,,要在這張紙板中剪取正方形(剪法如圖1所示),圖1中剪法稱為第次剪取,記所得的正方形面積為;按照圖1中的剪法,在余下的中,分別剪取兩個全等正方形,稱為第次剪取,并記這兩個正方形面積和為(如圖2) ;再在余下的四個三角形中,用同樣的方法分別剪取正方形,得到四個相同的正方形,稱為第次剪取,并記這四個正方形的面積和為,(如圖3);繼續(xù)操作下去···則第次剪取后, ___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》勾股一章記載:今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?譯文:已知長方形門的高比寬多68寸,門的對角線長1丈,那么門的高和寬各是多少?(1=10尺,1=10)設(shè)長方形門的寬尺,可列方程為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向左平移6個單位長度,得到點(diǎn)

1)直接寫出點(diǎn)的坐標(biāo);

2)若拋物線經(jīng)過點(diǎn),,求拋物線的表達(dá)式;

3)若拋物線的頂點(diǎn)在直線上移動,當(dāng)拋物線與線段2個公共點(diǎn)時,求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的出行方式,隨機(jī)從全校2000名學(xué)生中抽取了300名學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制如下條形統(tǒng)計圖,下列說法不正確的是(  )

A.樣本中步行人數(shù)最少

B.本次抽樣的樣本容量是300

C.樣本中坐公共汽車的人數(shù)占調(diào)查人數(shù)的50%

D.全校步行、騎自行車的人數(shù)的總和與坐公共汽車的人數(shù)一定相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】歡歡放學(xué)回家看到桌上有三個禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,禮包都是智能對話機(jī)器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.

1)歡歡隨機(jī)地從桌上取出一個禮包,取出的是芭比娃娃的概率是多少?

2)請用樹狀圖或列表法表示歡歡隨機(jī)地從桌上取出兩個禮包的所有可能結(jié)果,并求取出的兩個禮包都是智能對話機(jī)器人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)MN,給出如下定義:點(diǎn)M與點(diǎn)N的“折線距離”為:

例如:若點(diǎn)M(-11),點(diǎn)N(2,-2),則點(diǎn)M與點(diǎn)N的“折線距離”為:.根據(jù)以上定義,解決下列問題:

1)已知點(diǎn)P(3,-2).

①若點(diǎn)A(-2,-1),則d(PA)= ;

②若點(diǎn)B(b2),且d(PB)=5,則b=

③已知點(diǎn)Cm,n)是直線上的一個動點(diǎn),且d(P,C)<3,求m的取值范圍.

2)⊙F的半徑為1,圓心F的坐標(biāo)為(0t),若⊙F上存在點(diǎn)E,使d(E,O)=2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式及x值的取值范圍;

2)要圍成面積為45m2的花圃,AB的長是多少米?

3)當(dāng)AB的長是多少米時,圍成的花圃的面積最大,最大面積為多少m2?

查看答案和解析>>

同步練習(xí)冊答案