【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(___ ___)
∴∠2=∠CGD(等量代換)
∴CE∥BF(__ ___)
∴∠____ ____=∠BFD(___ ____)
又∵∠B=∠C(已知)
∴____ ____(等量代換)
∴AB∥CD(___ ____)
【答案】對頂角相等;同位角相等,兩直線平行;C;兩直線平行,同位角相等;∠BFD=∠B;內(nèi)錯角相等,兩直線平行
【解析】根據(jù)對頂角性質(zhì)和已知推出∠2=∠CGD,推出CE∥BF,根據(jù)平行線的性質(zhì)推出∠BFD=∠B即可;
解:如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(對頂角相等)
∴∠2=∠CGD(等量代換)
∴CE∥BF(同位角相等,兩直線平行)
∴∠C=∠BFD(兩直線平行,同位角相等)
又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代換)
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
“點睛”本題考查了平行線的性質(zhì)和判定的應(yīng)用,主要檢查學(xué)生能否熟練地運用平行線的性質(zhì)和判定進(jìn)行推理和證明,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:△ABC內(nèi)接于⊙O,點D在OC的延長線上,sinB=,∠D=30度.
(1)求證:AD是⊙O的切線;
(2)若AC=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標(biāo)A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個相等的實數(shù)根;
④拋物線與x軸的另一個交點是(-1,0);
⑤當(dāng)1<x<4時,有y2<y1,
其中正確的是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列推理過程,在括號中填寫理由.
如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.試說明:AC∥DF.
解:∵∠1=∠2(已知),∠1=∠3(______________),
∴∠2=∠3(___________________).
∴__∥__(__________________________________).
∴∠C=∠ABD (________________________________).
又∵∠C=∠D(____________),
∴∠D=∠ABD(等量代換)
∴AC∥DF(______________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于軸或軸,物體甲和物體乙由點(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2015次相遇地點的坐標(biāo)
是( 。
A. (-1,1) B. (1,-1) C. (-2,0) D. (-1,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面幾何的學(xué)習(xí)過程中,我們經(jīng)常會研究角和線之間的關(guān)系.
(1)如圖①,直線a、b被直線c所截,交點分別為A、B.當(dāng)∠1、∠2滿足數(shù)量關(guān)系 時,a∥b;
(2)如圖②,在(1)中,作射線BC,與直線a的交點為C,當(dāng)∠3、∠4滿足何種數(shù)量關(guān)系時,AB=AC?證明你的結(jié)論;
(3)如圖③,在(2)中,若∠BAC=90°,AB=2,⊙I為△ABC的內(nèi)切圓.
①求⊙I的半徑;
②P為直線a上一點,若⊙I上存在兩個點M、N,使∠MPN=60°,直接寫出AP長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com