【題目】閱讀下列材料:
小輝和小樂一起在學校寄宿三年了,畢業(yè)之際,他們想合理分配共同擁有的三件“財產(chǎn)”:一個電子詞典、一臺迷你唱機、一套珍藏版小說.他們本著“在尊重各自的價值偏好基礎(chǔ)上進行等值均分”的原則,設(shè)計了分配方案,步驟如下(相應(yīng)的數(shù)額如表二所示):
①每人各自定出每件物品在心中所估計的價值;
②計算每人所有物品估價總值和均分值(均分:按總?cè)藬?shù)均分各自估價總值);
③每件物品歸估價較高者所有;
④計算差額(差額:每人所得物品的估價總值與均分值之差);
⑤小樂拿225元給小輝,仍“剩下”的300元每人均分.
依此方案,兩人分配的結(jié)果是:小輝拿到了珍藏版小說和375元錢,小樂拿到的電子詞典和迷你唱機,但要付出375元錢.
(1)甲、乙、丙三人分配A,B,C三件物品,三人的估價如表三所示,依照上述方案,請直接寫出分配結(jié)果;
(2)小紅和小麗分配D,E兩件物品,兩人的估價如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下來,依據(jù)“在尊重各自的價值偏好基礎(chǔ)上進行等值均分”的原則,該怎么分配較為合理?請完成表四,并寫出分配結(jié)果.(說明:本題表格中的數(shù)值的單位均為“元”)
【答案】(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)詳見解析.
【解析】
(1)按照分配方案的步驟進行分配即可;
(2)按照分配方案的步驟進行分配即可.
解:(1)如下表:
故分配結(jié)果如下:
甲:拿到物品C和現(xiàn)金: 元.
乙:拿到現(xiàn)金元.
丙:拿到物品A,B,付出現(xiàn)金:元.
故答案為:
甲:拿到物品C和現(xiàn)金: 200元.
乙:拿到現(xiàn)金450元.
丙:拿到物品A,B,付出650元.
(2)
因為0<m-n<15
所以
所以
即分配物品后,小莉獲得的“價值"比小紅高.高出的數(shù)額為:
所以小莉需拿()元給小紅.
所以分配結(jié)果為:小紅拿到物品D和()元錢,小莉拿到物品E并付出()元錢.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4經(jīng)過A(﹣3,0),B(5,﹣4)兩點,與y軸交于點C,連接AB,AC,BC.
(1)求拋物線的表達式;
(2)求△ABC的面積;
(3)拋物線的對稱軸上是否存在點M,使得△ABM是直角三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C為 的中點,∠ACB=120°,OC的延長線與AD交于點D,且∠D=∠B.
(1)求證:AD與⊙O相切;
(2)若CE=4,求弦AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個二次函數(shù)圖象上部分點的橫坐標x與縱坐標y的對應(yīng)值如下表所示:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求這個二次函數(shù)的表達式;
(2)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;
(3)當4<x<1時,直接寫出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將命題“在同圓中,相等的圓心角所對的弧相等,所對的弦也相等”改寫成“已知……求證……”的形式,下列正確的是( )
A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求證:AB=CD
B.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求證:AD=BC
C.已知:在⊙O中,∠AOB=∠COD.求證:弧AD=弧BC,AD=BC
D.已知:在⊙O中,∠AOB=∠COD.求證:弧AB=弧CD,AB=CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(1)班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學生中選取1名參加頒獎大會,恰好選到男生是 事件(填隨機或必然),選到男生的概率是 .
(2)分別從獲得美術(shù)獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖的方法,求剛好是一男生和一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=6,D是BC上一點,CD=2,過點D的直線l將△ABC分成兩部分,使其所分成的三角形與△ABC相似,若直線l與△ABC另一邊的交點為點P,則DP=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線經(jīng)過點,.
(1)求該拋物線的函數(shù)表達式及對稱軸;
(2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在,之間的部分為圖象(包含,兩點),如果直線與圖象有一個公共點,結(jié)合函數(shù)的圖象,直接寫出點縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB=5cm,連桿BC=CD=20cm,BC,CD與AB始終在同一平面內(nèi).
(1)如圖②,轉(zhuǎn)動連桿BC,CD,使∠BCD成平角,∠ABC=143°,求連桿端點D離桌面l的高度DE.
(2)將圖②中的連桿CD再繞點C逆時針旋轉(zhuǎn)16°,如圖③,此時連桿端點D離桌面l的高度減小了 cm.
(參考數(shù)據(jù):sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com