【題目】有三張正面分別標有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.
(1)請用列表或畫樹狀圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結果;
(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在直線y=﹣x上的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船在A處測得燈塔P在船的北偏東30°方向,輪船沿著北偏東60°方向航行16km后到達B處,這時燈塔P在船的北偏西75°方向.則燈塔P與B之間的距離等于___________km(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】邊長為2的正方形ABCD在平面直角坐標系中如圖放置,已知點A的橫坐標為1,作直線OC與邊AD交于點E.
(1)求∠OCB的正弦值和余弦值;
(2)過O、D兩點作直線,記該直線與直線OC的夾角為 ,試求tan的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.
(1)分別求出直線、雙曲線的函數(shù)表達式.
(2)求出點D的坐標.
(3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結論正確的個數(shù)是( 。
A.3
B.4
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
操作與發(fā)現(xiàn):
如圖,已知A,B兩點在直線CD的同一側,線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點P,點G是AE的中點,連接BG.
探索與證明:求證:
(1)四邊形EFBG是矩形;
(2)△ABG∽△PBF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:BD為的直徑,O為圓心,點A為圓上一點,過點B作的切線交DA的延長線于點F,點C為上一點,且,連接BC交AD于點E,連接AC.
如圖1,求證:;
如圖2,點H為內(nèi)部一點,連接OH,CH若時,求證:;
在的條件下,若,的半徑為10,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖2,①線段DG與BE之間的數(shù)量關系是 ;②直線DG與直線BE之間的位置關系是 .
(2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE,證明:直線DG⊥BE.
(3)應用:在(2)情況下,連結GE(點E在AB上方),若GE∥AB,且AB=,AE=1,則線段DG是多少?(直接寫出結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點,與x軸相交于點B.
(1)求k的值;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)觀察反比例函數(shù)的圖象,請直接寫出:當時,自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com