【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°,求出圖中陰影部分的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)連接OE,可證得OE∥AD,則∠DAE=∠AEO=∠EAO,可得結(jié)論;
(2)由條件求得∠AOE=120°,容易求得△AOE和扇形AOE的面積,利用面積差可求得陰影部分的面積.
試題解析:(1)證明:連接OE,如圖,
∵CD與⊙O相切于點(diǎn)E,
∴OE⊥CD,
∵AD⊥CD,
∴OE∥AD,
∴∠DAE=∠AEO,
∵AO=OE,
∴∠AEO=∠OAE,
∴∠OAE=∠DAE,
∴AE平分∠DAC;
(2)∵OA=OB,
∴∠AEO=∠OAE=30°,
∴∠AOE=120°,
∴陰影部分的面積=S扇形AOE﹣S△AOE
=S扇形AOE﹣S△ABE
=
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,是中心對(duì)稱(chēng)圖形的是( )
A. 等腰三角形 B. 直角三角形 C. 正五邊形 D. 平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)填表:
a | 0.000 001 | 0.001 | 1 | 1 000 | 1 000 000 |
(2)由上表你發(fā)現(xiàn)了什么規(guī)律?請(qǐng)用語(yǔ)言敘述這個(gè)規(guī)律:______________________________.
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知=1.442,則=__________,=__________;
②已知=0.076 96,則=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1和S2,比較S1與S2的大小( 。
A. S1>S2 B. S1=S2 C. S1<S2 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過(guò)程中,△CMN的周長(zhǎng)如何變化?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=3x-2的圖象不經(jīng)過(guò)( ).
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A為某封閉圖形邊界的一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)P的時(shí)間為x,線段AP的長(zhǎng)為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數(shù);
(2)若∠BOF=36°,求∠AOC的度數(shù);
(3)若|∠AOC﹣∠BOF|=α°,請(qǐng)直接寫(xiě)出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)P(x,y)先向左平移4個(gè)單位,再向上平移3個(gè)單位后得到點(diǎn)P′(1,2),則點(diǎn)P的坐標(biāo)為( 。
A.(2,6)B.(﹣3,5)C.(﹣3,1)D.(5,﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com