【題目】甲騎自行車從地出發(fā)前往地,同時乙步行從地出發(fā)前往地,如圖的折線和線段,分別表示甲、乙兩人與地的距離甲 ,乙與他們所行時間之間的函數(shù)關(guān)系.
(1)求線段對應(yīng)的甲與的函數(shù)關(guān)系式并注明自變量的取值范圍;
(2)求乙與的函數(shù)關(guān)系式及乙到達地所用的時間;
(3)經(jīng)過 小時,甲、乙兩人相距.
【答案】(1)甲;(2)乙,乙到達地用時;(3)或小時
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù),利用待定系數(shù)法可以求得線段OP對應(yīng)的y甲與x的函數(shù)關(guān)系式;
(2)利用待定系數(shù)法可以求得y乙與x的函數(shù)關(guān)系式以及乙到達A地所用的時間;
(3)根據(jù)(1)和(2)中的函數(shù)解析式,可以求得經(jīng)過多少小時,甲、乙兩人相距2km.
解:(1)設(shè)甲,
將代入甲,得:
,
∴甲;
(2)當甲時,
設(shè)乙
將代入乙,得
∴乙;
當乙時,
∴乙到達地用時.
(2)①,
解得:;
②,
解得:;
∴經(jīng)過或小時,甲、乙兩人相距.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(m,-1),
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出不等式x+b>的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形中,,點和點都是從點出發(fā),點在這個長方形的邊上順時針運動,點在這個長方形的邊上逆時針運動,它們的速度都是每秒1個單位,設(shè)它們的運動時間是秒
(1)時,求線段的長;
(2)在運動過程中,連接,設(shè)線段和點所經(jīng)過的路線所組成的封閉的圖形面積是,求出與的函數(shù)關(guān)系式,并注明的取值范圍.
(3)在上一問中,是否存在某個時刻,使得是長方形面積的一半?若存在,求出;若不存在,請說明理由.
(4)當點在上運動時(不包括點),存不存在某一時刻,使得是直角三角形嗎?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E到△ABC三邊的距離相等,過點E作MN∥BC交AB于M,交AC于N.若BM+CN=2019,則線段NM的長為( )
A.2017B.2018C.2019D.2020
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com