【題目】如圖,在△ABC中,AB=BC , ∠B=120°,AB的垂直平分線交AC于點D . 若AC=15cm,則AD=cm.
【答案】5
【解析】連接BD , ∵AB=BC , ∠ABC=120°,∴∠A=∠C= (180°-∠ABC)=30°,∴DC=2BD,∵AB的垂直平分線交AC于點D,∴AD=BD,∴DC=2AD , ∵AC=15,∴AD等于AC的三分之一為5.
【考點精析】掌握三角形的內(nèi)角和外角和線段垂直平分線的性質(zhì)是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當(dāng)點P在的圖象上運(yùn)動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當(dāng)點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川某特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元銷售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷量可增加20千克.若該專賣店銷售這種核桃想要平均每天獲利2240元,請回答:
(1)每千克核桃應(yīng)降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折銷售?
(3)若該專賣店想獲得最大利潤W,核桃的單價應(yīng)定為多少元?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果方程(m﹣1)x2|m|﹣1+2=0是一個關(guān)于x的一元一次方程,那么m的值是( 。
A. 0 B. 1 C. ﹣1 D. ±1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點 A 的坐標(biāo)為(2,-3),則點 A 到 x 軸的距離為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)李老師給學(xué)生出了這樣一個問題:探究函數(shù)的圖象與性質(zhì).小斌根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小斌的探究過程,請您補(bǔ)充完成:
(1)函數(shù)的自變量x的取值范圍是__________;
(2)列出y與x的幾組對應(yīng)值,請直接寫出m的值,m=______;
(3)請在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島是中國的固有領(lǐng)土,位于中國東海,面積約4400000平方米,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為( )
A.44×105
B.4.4×106
C.0.44×107
D.4.4×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖像可能是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com