【題目】如圖,∠AOB90°,點(diǎn)CD分別在射線OA,OB上,CE是∠ACD的平分線,CE的反向延長(zhǎng)線與∠CDO的平分線交于點(diǎn)F

1)當(dāng)∠OCD56°(如圖①),試求∠F;

2)當(dāng)C,D在射線OA、OB上任意移動(dòng)時(shí)(不與點(diǎn)O重合)(如圖②),∠F的大小是否變化?若變化,請(qǐng)說明理由若不變化求出∠F

【答案】1)∠F=45°;(2)不變,∠F=45°.

【解析】

1)首先求出∠CDO34°,∠ACD=124°,進(jìn)而得到∠ECD=62°,∠CDF17°,再根據(jù)三角形的外角等于與它不相鄰的兩內(nèi)角之和,可求∠F=∠ECD﹣∠CDF;

2)根據(jù)三角形外角的性質(zhì)和角平分線定義求出∠ECD90°+CDO),∠CDFCDO,然后根據(jù)三角形的外角等于與它不相鄰的兩內(nèi)角之和,可求∠F=∠ECD﹣∠CDF

1)∵∠AOB=90°,∠OCD=56°,

∴∠CDO=34°,∠ACD=124°,

CE是∠ACD的平分線,DF是∠CDO的平分線,

∴∠ECD=62°,∠CDF=17°,

∵∠ECD=F+CDF

∴∠F=ECD -∠CDF =45°;

2)∠F不變,

∵∠ECDACD90°+CDO),

∴∠ECD45°+CDO,

∵∠CDFCDO

∴∠F=∠ECD﹣∠CDF,

45°+CDOCDO,

45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn),

如圖1,在中,,上一點(diǎn),將點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)50°得到點(diǎn),則的數(shù)量關(guān)系是________________________。

2)類比探究

如圖2,將(1)中的繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),(1)中的結(jié)論是否成立,并就圖2的情形說明理由。

3)拓展延伸

繞點(diǎn)在平面旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到時(shí),請(qǐng)直接寫出度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一坐標(biāo)系下,一次函數(shù)與二次函數(shù)的圖象大致可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知命題等腰三角形兩腰上的高線長(zhǎng)相等

1)請(qǐng)寫出該命題的逆命題;

2)判斷(1)中命題的真假,并畫出圖形,補(bǔ)充已知,求證,及證明過程.

圖形:

已知:在ABC中,CDAB,BEAC,且______

求證:______

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),以為直徑在第一象限內(nèi)作半圓,為半圓上一點(diǎn),連接并延長(zhǎng)至,使,過軸于點(diǎn),交線段于點(diǎn),已知,拋物線經(jīng)過、、三點(diǎn).

________°.

求拋物線的函數(shù)表達(dá)式.

為拋物線上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),以、、、為頂點(diǎn)的四邊形面積記作,則取何值時(shí),相應(yīng)的點(diǎn)有且只有個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行,自行車成為人們喜愛的交通工具.某品牌共享自行車在溫州的投放量自2017年起逐月增加,據(jù)統(tǒng)計(jì),該品牌共享自行車1月份投放了640輛,3月份投放了1000.

(1)該品牌共享自行車前3個(gè)月的投放量的月平均增長(zhǎng)率相同,則這三個(gè)月一共投放了多少輛自行車?

(2)考慮到增強(qiáng)客戶體驗(yàn),該品牌共享自行車準(zhǔn)備投入3萬元向自行車生產(chǎn)廠商定制了一批兩種規(guī)格比較高檔的自行車,之后投放到某高端寫字樓區(qū)域.已知自行車生產(chǎn)廠商生產(chǎn)A型車的成本價(jià)為300/輛,售價(jià)為500/輛,生產(chǎn)B型車的成本價(jià)為700/輛,售價(jià)為1000/.根據(jù)指定要求,B型車的數(shù)量需超過12輛,且A型車的數(shù)量不少于B型車的2.自行車生產(chǎn)廠商應(yīng)如何設(shè)計(jì)生產(chǎn)方案才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA的頂點(diǎn)C的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點(diǎn),且∠BEC=CFA=α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請(qǐng)解決下面兩個(gè)問題:

①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如圖(b),若0°<BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于α與∠BCA關(guān)系的條件________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立;

(2)如圖(c),若直線CD經(jīng)過∠BCA的外部,∠BCA=α,請(qǐng)寫出EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為2cm∠DAB=60°.點(diǎn)PA點(diǎn)出發(fā),以cm/s的速度,沿ACC作勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動(dòng).當(dāng)P運(yùn)動(dòng)到C點(diǎn)時(shí),P、Q都停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts

1)當(dāng)P異于AC時(shí),請(qǐng)說明PQ∥BC

2)以P為圓心、PQ長(zhǎng)為半徑作圓,請(qǐng)問:在整個(gè)運(yùn)動(dòng)過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案