【題目】如圖,反映的是某中學九(3)班學生外出方式(乘車、步行、騎車)的頻數(shù)(人數(shù))分布直方圖(部分)和扇形分布圖,那么下列說法正確的是(  )

A. 九(3)班外出的學生共有42

B. 九(3)班外出步行的學生有8

C. 在扇形圖中,步行的學生人數(shù)所占的圓心角為82°

D. 如果該校九年級外出的學生共有500人,那么估計全年級外出騎車的學生約有140

【答案】B

【解析】

A、由乘車的人數(shù)除以占的百分比求出該班的學生數(shù)即可;

B、由該班的總?cè)藬?shù)減去乘車和騎車人數(shù)可得步行的學生數(shù)即可判斷;

C、根據(jù)步行占的百分比,乘以360即可得到結(jié)果;

D、由騎車的占總?cè)藬?shù)比例乘以500即可得到結(jié)果.

A、由題意知乘車的人數(shù)是20人,占總?cè)藬?shù)的50%,所以九(3)班有20÷50%=40人,故此選項錯誤;

B、步行人數(shù)為:40-12-20=8人,故此選項正確;

C、步行學生所占的圓心角度數(shù)為×360°=72°,故此選項錯誤;

D、如果該中學九年級外出的學生共有500人,那么估計全年級外出騎車的學生約為500×=150人,故此選項錯誤;

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動,讓扇形COD繞點O逆時針旋轉(zhuǎn),線段AC、BD也隨之變化,設旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當OC∥AB時,旋轉(zhuǎn)角α=度;
(2)線段AC與BD有何數(shù)量關(guān)系,請僅就圖2給出證明.
(3)當A、C、D三點共線時,求BD的長.
(4)P是線段AB上任意一點,在扇形COD的旋轉(zhuǎn)過程中,請直接寫出線段PC的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.

(1)求證:△AED≌△CFD;

(2)求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠BAC=90°,ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當點D在線段BC上時.求證:CF+CD=BC;

(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;

(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關(guān)系;

②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC.求OC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班體育委員統(tǒng)計了全班45名同學一周的體育鍛煉時間(單位:小時),并繪制了如圖所示的折線統(tǒng)計圖,下列說法中錯誤的是(

A. 鍛煉時間是9小時的人數(shù)最多 B. 鍛煉時間是10小時的有10

C. 鍛煉時間是11小時的有4 D. 鍛煉時間不低于9小時的有14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種公益叫光盤.所謂光盤,就是吃光你盤子中的食物,杜絕舌尖上的浪費.某校九年級開展光盤行動宣傳活動,根據(jù)各班級參加該活動的總?cè)舜握劬統(tǒng)計圖,下列說法正確的是( 。

A. 極差是40 B. 中位數(shù)是58 C. 平均數(shù)大于58 D. 眾數(shù)是5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,立方體的六個面上標著連續(xù)的整數(shù),若相對的兩個面上所標之數(shù)的和相等,則這六個數(shù)的和為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉(zhuǎn),得到矩形AEFG,E點正好落在邊CD上,連接BE,BG,且BGAEP.

1)求證:CBE=BAE

(2)求證:PG=PB;

3)若AB=BC=3,求出BG的長.

查看答案和解析>>

同步練習冊答案