【題目】如圖,點(diǎn)A、O、E在同一直線上,∠AOB=40°,∠COD=28°,OD平分∠COE.
(1)求∠COB的度數(shù);
(2)求∠AOD的度數(shù).
【答案】
(1)解: ∵ OD 平分 ∠COE,
∴∠DOE=∠COD .
∵∠COD=28°,
∴∠DOE=28°
.∵∠AOB+∠COB+∠AOD+∠DOE=180°,
∴∠BOC=180(∠AOB+∠COD+∠DOE)=180°(40°+28°+28°)=84°.
(2)解:
【解析】(1)由OD平分∠COE可求得∠DOE的度數(shù),再由平角的定義可求出∠BOC的度數(shù);
(2)由∠AOD+∠DOE=180°可求出∠AOD的度數(shù).
【考點(diǎn)精析】本題主要考查了角的平分線和角的運(yùn)算的相關(guān)知識點(diǎn),需要掌握從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個角可以用其他角的和或差來表示才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=10cm,點(diǎn)C是直線AB上一點(diǎn),BC=4cm,若M是AC的中點(diǎn),N是BC的中點(diǎn),則線段MN的長度是( )
A.7cm
B.3cm
C.7cm或3cm
D.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長線上,CE∥BF,連結(jié)BE、CF.
(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市2017年中考數(shù)學(xué)學(xué)科各分?jǐn)?shù)段成績分布情況,從中抽取180名考生的中考數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析.在這個問題中,樣本是指( )
A. 180 B. 被抽取的180名考生
C. 被抽取的180名考生的中考數(shù)學(xué)成績 D. 我市2017年中考數(shù)學(xué)成績
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題(保留作圖痕跡,不寫畫法).
(1)請?jiān)谧鴺?biāo)系中,畫出△ABC關(guān)于y軸對稱的△A′B′C′.
(2)如圖(2),A與B是兩個居住社區(qū),OC與OD是兩條交匯的公路,欲建立一個超市M,使它到A、B兩個社區(qū)的距離相等,且到兩條公路OC、OD的距離也相等.請利用尺規(guī)作圖,確定超市M的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線的解析式;
(2)若點(diǎn)P在x軸上,且,求點(diǎn)P的坐 標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com