【題目】在銳角中,邊長(zhǎng)長(zhǎng)為18,高長(zhǎng)為12

1)如圖,矩形的邊邊上,其余兩個(gè)頂點(diǎn)、分別在、邊上,于點(diǎn),求的值.

2)設(shè),矩形的面積為,求的函數(shù)關(guān)系式,并求的最大值.

【答案】1;(2,當(dāng)時(shí),有最大值為54

【解析】

1)由矩形的性質(zhì)得出EF//BC,從而得,根據(jù)相似三角形對(duì)應(yīng)高的比等于相似比可得,繼而根據(jù)比例的性質(zhì)即可求得答案;

2)由已知可得四邊形EHDK是矩形,從而得KD=EH=x,繼而得出,,再根據(jù)矩形的面積公式可得函數(shù)關(guān)系式,繼而利用二次函數(shù)的性質(zhì)即可求得面積的最大值.

1)∵四邊形EFGH是矩形,邊GHBC邊上,

∴EF//BC,

又∵ADBC

AKEF,

∵EF//BC,

,

,

∵BC=18,=12,

;

2四邊形EFGH是矩形,

∠KEH=∠EHD=90°,

又∵∠EKD=90°,

四邊形EHDK是矩形,

KD=EH=x,

,

,

,

當(dāng)時(shí),有最大值為54

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠B=90°,AB=5cmBC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng).

1)若P、Q分別從AB同時(shí)出發(fā),那么幾秒后PBQ的面積等于4cm2?

2)如果PQ分別從A、B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于5cm?

3)在(1)中,PBQ的面積能否等于7cm2? 請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y1=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)y2=(k≠0)的圖象上.

(1)求點(diǎn)P的坐標(biāo);

(2)求反比例函數(shù)的解析式,并直接寫出當(dāng)y2<2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天上午7:30,小芳在家通過(guò)滴滴打車軟件打車前往動(dòng)車站搭乘當(dāng)天上午8:30的動(dòng)車.記汽車的行駛時(shí)間為t小時(shí),行駛速度為v千米/小時(shí)(汽車行駛速度不超過(guò)60千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:

V(千米/小時(shí))

20

30

40

50

60

T(小時(shí))

0.6

0.4

0.3

0.25

0.2

(1)根據(jù)表中的數(shù)據(jù)描點(diǎn),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;

(2)若小芳從開(kāi)始打車到上車用了10分鐘,小芳想在動(dòng)車出發(fā)前半小時(shí)到達(dá)動(dòng)車站,若汽車的平均速度為32千米/小時(shí),小芳能否在預(yù)定的時(shí)間內(nèi)到達(dá)動(dòng)車站?請(qǐng)說(shuō)明理由;

(3)若汽車到達(dá)動(dòng)車站的行駛時(shí)間t滿足0.3<t<0.5,求平均速度v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了開(kāi)發(fā)利用海洋資城,某勘測(cè)飛機(jī)測(cè)量一島嶼兩端A,B的距高,飛機(jī)在距海平面垂直高度為100m的點(diǎn)C處測(cè)得端點(diǎn)A的俯角為60°,然后沿著平行于AB的方向水平飛行500m,在點(diǎn)D測(cè)得端點(diǎn)B的俯角為45°,則島嶼兩端A,B的距離為___________.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次綜合社會(huì)實(shí)踐活動(dòng)中,小東同學(xué)從處出發(fā),要到地北偏東60°方向的處,他先沿正東方向走了2千米到達(dá)處,再沿北偏東15°方向走,恰能到達(dá)目的地,如圖所示,則兩地相距____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在樓AB與樓CD之間有一旗桿EF,從AB頂部A點(diǎn)處經(jīng)過(guò)旗桿頂部E點(diǎn)恰好看到樓CD的底部D點(diǎn),且俯角為45°,從樓CD頂部C點(diǎn)處經(jīng)過(guò)旗桿頂部E點(diǎn)恰好看到樓ABG點(diǎn),BG=1米,且俯角為30°,已知樓AB20米,求旗桿EF的高度.(結(jié)果精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).

1)點(diǎn)P是線段BC下方的拋物線上一點(diǎn),過(guò)點(diǎn)PPDBCBC于點(diǎn)D,過(guò)點(diǎn)PEPy軸交BC于點(diǎn)E.點(diǎn)MN是直線BC上兩個(gè)動(dòng)點(diǎn)且MNAOxMxN).當(dāng)DE長(zhǎng)度最大時(shí),求PM+MNBN的最小值.

2)將點(diǎn)A向左移動(dòng)3個(gè)單位得點(diǎn)G,△GOC延直線BC平移運(yùn)動(dòng)得到三角形△G'OC'(兩三角形可重合),則在平面內(nèi)是否存在點(diǎn)G',使得△GBC為等腰三角形,若存在,直接寫出滿足條件的所有點(diǎn)G′的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形A1B1C2C1A2B2C3C2,A3B3C4C3按如圖所示的方式放置,點(diǎn)A1、A2A3和點(diǎn)C1、C2、C3、C4分別在拋物線yx2y軸上,若點(diǎn)C10,1),則正方形A3B3C4C3的面積是________

查看答案和解析>>

同步練習(xí)冊(cè)答案