【題目】
(1)解方程:
(2)解不等式組:

【答案】
(1)解:去分母得,2+2x﹣4=x+1,

移項(xiàng)得,2x﹣x=1+4﹣2,

合并同類項(xiàng)得,x=3,

經(jīng)檢驗(yàn),x=3是原方程的根


(2)解: ,由①得,x>1;由②得,x≤3,

故原不等式組的解集為:1<x≤3.


【解析】(1)先去分母,再移項(xiàng)、合并同類項(xiàng)即可求出x的值;(2)分別求出各不等式的解集,再求出其公共解集即可.
【考點(diǎn)精析】利用去分母法和一元一次不等式組的解法對題目進(jìn)行判斷即可得到答案,需要熟知先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊;解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點(diǎn)試開放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過30人時(shí),人均收費(fèi)120元;超過30人且不超過m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過一定數(shù)量時(shí),會出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測量位于烈山山頂?shù)难椎鄣裣窀叨龋阎疑狡旅媾c水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保證中小學(xué)生每天鍛煉一小時(shí),某校開展了形式多樣的體育活動(dòng)項(xiàng)目,小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì) 圖(1)和圖(2).

(1)請根據(jù)所給信息在圖(1)中將表示“乒乓球”項(xiàng)目的圖形補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖(2)中表示”足球”項(xiàng)目扇形的圓心角度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是ABCD的邊CD上一點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,且AD=4, = ,則CF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點(diǎn)A、B,與雙曲線y= 在第一象限內(nèi)交于點(diǎn)C(1,m).
(1)求m和n的值;
(2)過x軸上的點(diǎn)D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線y= 交于點(diǎn)P、Q,求△APQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB的長為2,C為AB上一個(gè)動(dòng)點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個(gè)等腰直角三角形△ACD和△BCE,那么DE長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AC⊥AB,AB=2 ,AC=2,點(diǎn)D是以AB為直徑的半圓O上一動(dòng)點(diǎn),DE⊥CD交直線AB于點(diǎn)E,設(shè)∠DAB=α(0°<α<90°).
(1)當(dāng)α=18°時(shí),求 的長;
(2)當(dāng)α=30°時(shí),求線段BE的長;
(3)若要使點(diǎn)E在線段BA的延長線上,則α的取值范圍是(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

查看答案和解析>>

同步練習(xí)冊答案