【題目】如圖,△ABC中,AC=BC=4,∠ACB=90°,D為邊AB上一動點(不與A、B重合),⊙D與BC切于E點,E點關(guān)于CD的對稱點F在△ABC的一邊上,則BD=______.
【答案】或;
【解析】
分為當(dāng)E點關(guān)于CD的對稱點F在AB或者AC上進行討論:
①當(dāng)F在AB邊上時,根據(jù)對稱性得出CE=CF,DE=DF,作,則 ,設(shè),則,,在直角三角形CHF中,用勾股定理解出即可得出答案;
②當(dāng)F在AC邊上時,根據(jù)對稱性知圓與AC、BC均相切,此時D在AB的中點,從而求解.
解:①當(dāng)F在AB邊上時,作,連接DF、CF,如圖:
根據(jù)對稱性知:CE=CF,DE=DF
又∵AC=BC=4,∠ACB=90°
∴ ,△DEB是等腰直角三角形
設(shè),則,
∴
在直角三角形CHF中:
即: 解得:
∴
②當(dāng)F在AC邊上時,根據(jù)對稱性知圓與AC、BC均相切,此時此時D在AB的中點,如圖:
∴
故答案為:或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,AC與BD交于點E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若S△ACH=,求EC之長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點與地面的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y1=kx+3與雙曲線(x>0)交于點P,PA⊥x軸于點A,PB⊥y軸于點B,直線y1=kx+3分別交x軸、y軸于點C和點D,且S△DBP=27,.
(1)求OD和AP的長;
(2)求m的值;
(3)如圖2,點M為直線BP上的一個動點,連接CB、CM,當(dāng)△BCM為等腰三角形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了回慣顧客,計劃于周年店慶當(dāng)天舉行抽獎活動.凡是購物金額達到m元及以上的顧客,都將獲得抽獎機會.規(guī)則如下:在一個不透明袋子里裝有除數(shù)字標(biāo)記外其它完全相同的4個小球,數(shù)字標(biāo)記分別為“a” 、“b”、“c”、“0” (其中正整數(shù)a、b、c滿足a+b+c=30且a>15).顧客先隨機摸出一球后不放回,再摸出第二球,則兩球標(biāo)記的數(shù)字之和為該顧客所獲獎勵金額(單位:元)、經(jīng)調(diào)查發(fā)現(xiàn),每日前來購物的顧客中,購物金額及人數(shù)比例如下表所示:
購物金額x (單位:元) | 0<x<100 | 100≤x<200 | 200≤x<300 | x≥300 |
人數(shù)比例 |
現(xiàn)預(yù)計活動當(dāng)天購物人數(shù)將達到200人.
(1)在活動當(dāng)天,某顧客獲得抽獎機會,試用畫樹狀圖或列表的方法,求該顧客獲得a元獎勵金的概率;
(2)以每位抽獎顧客所獲獎勵金的平均數(shù)為決策依據(jù),超市設(shè)定獎勵總金額不得超過2000元,且盡可能讓更多的顧客參與抽獎活動,問m應(yīng)定為100元?200元?還是300元?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過定點A,反比例函數(shù)的圖像經(jīng)過點A,且與一次函數(shù)的圖像相交于點B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標(biāo)為n的點P在反比例函數(shù)圖象的第三象限上,且在點B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)《圓》這一單元時,我們學(xué)習(xí)了圓周角定理的推論:圓內(nèi)接四邊形的對角互補;事實上,它的逆命題:對角互補的四邊形的四個頂點共圓,也是一個真命題.在圖形旋轉(zhuǎn)的綜合題中經(jīng)常會出現(xiàn)對角互補的四邊形,那么,我們就可以借助“對角互補的四邊形的四個頂點共圓”,然后借助圓的相關(guān)知識來解決問題,例如:
已知:是等邊三角形,點是內(nèi)一點,連接,將線段繞逆時針旋轉(zhuǎn)得到線段,連接,,,并延長交于點.當(dāng)點在如圖所示的位置時:
(1)觀察填空:
①與全等的三角形是________;
②的度數(shù)為
(2)利用題干中的結(jié)論,證明:,,,四點共圓;
(3)直接寫出線段,,之間的數(shù)量關(guān)系.____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的一種果汁飲料由A、B兩種水果配制而成,其比例與成本如下方表格所示,已知該飲料的成本價為8元/千克,按現(xiàn)價售出后可獲利潤50%,每個月可出售27500瓶.
(1)求m的值;
(2)由于物價上漲,A水果成本提高了25%,B水果成本提高了20%,在不改變售價的情況下,若要保持每個月的利潤不減少,則現(xiàn)在至少需要售出多少瓶飲料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚州包子是淮揚菜系的維揚點心代表,里面的餡品種豐富.早飯準(zhǔn)備了四個包子,一個蟹黃包、一個松籽包、兩個三鮮包,四個包子除餡外其他都相同.
(1)請預(yù)測“吃一個包子恰好是松籽包”的概率是_______;
(2)請用畫樹狀圖或用表格的方法預(yù)測“吃兩個包子恰好是三鮮包”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com