【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,GFCD

1)①求證:四邊形CEGF是正方形;②推斷:的值為  

2)將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(α45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系;

3)正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CGAD于點(diǎn)H.若AG6,GH2,求正方形CEGF和正方形ABCD的邊長.

【答案】(1);(2AGBE;(3)正方形CEGF的邊長為3,正方形ABCD的邊長為3

【解析】

1)①由GEBC、GFCD結(jié)合得∠BCD90°,可得四邊形CEGF是矩形,再由∠ECG45°即可得證;

②由正方形性質(zhì)知∠CEG=∠B90°、∠ECG45°,據(jù)此可得GEAB,利用平行線分線段成比例定理可得;

2)連接CG,只需證△ACG∽△BCE即可得;

3)證△AHG∽△CHA,設(shè)BCCDADa,知ACa,則由,得,計(jì)算AH,代入可得:a3,可得結(jié)論.

解:(1)①如圖(1),∵四邊形ABCD是正方形,

∴∠BCD90°,∠BCA45°,

GEBC、GFCD

∴∠CEG=∠CFG=∠ECF90°,

∴四邊形CEGF是矩形,∠CGE=∠ECG45°,

EGEC

∴四邊形CEGF是正方形;

②由①知四邊形CEGF是正方形,

∴∠CEG=∠B90°,∠ECG45°,

GEAB,

,

故答案為:

2)連接CG,

由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACGα

RtCEGRtCBA中,cos45°,cos45°,

,

∴△ACG∽△BCE,

∴線段AGBE之間的數(shù)量關(guān)系為AGBE;

3)∵∠CEF45°,點(diǎn)B、E、F三點(diǎn)共線,

∴∠BEC135°,

∵△ACG∽△BCE,

∴∠AGC=∠BEC135°,

∴∠AGH=∠CAH45°,

∵∠CHA=∠AHG

∴△AHG∽△CHA,

設(shè)BCCDADa,則ACa,

則由,得

AH,

DHADAHa,CH

,

解得:a3,即BC3,CH×5

CGCHGH523,

∵四邊形CEGF是正方形,

CF3,

綜上,正方形CEGF的邊長為3,正方形ABCD的邊長為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:三角形任意兩邊的“極化值”等于第三邊上的中線和這邊一半的平方差.如圖1,在△ABC中,AOBC邊上的中線,ABAC的“極化值”就等于AO2BO2的值,可記為ABAC=AO2BO2

1)在圖1中,若∠BAC=90°,AB=8,AC=6AOBC邊上的中線,則ABAC= ,OCOA=

2)如圖2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

3)如圖3,在△ABC中,AB=AC,AOBC邊上的中線,點(diǎn)NAO上,且ON=AO.已知ABAC=14,BNBA=10,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC.將BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°ADC,連接OD

1)求證:COD是等邊三角形;

2)當(dāng)AOD是直角三角形且∠ADO=90°時(shí),求α的度數(shù);

3)當(dāng)α=110°125°140°時(shí),判斷AOD的形狀,請(qǐng)選擇其中一種情況說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長為16,AE=4,求C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在“用頻率估計(jì)概率”的實(shí)驗(yàn)中,統(tǒng)計(jì)了某種頻率結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,那么符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。

A. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面向上”

B. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)朝上的面點(diǎn)數(shù)是6

C. 在“石頭剪刀、和”的游戲中,小明隨機(jī)出的是“剪刀”

D. 袋子中有1個(gè)紅球和2個(gè)黃球,只有顏色上的區(qū)別,從中隨機(jī)取出一個(gè)球是黃球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,矩形ABCD中,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E、F

1)求證:四邊形BEDF是平行四邊形;

2)只需添加一個(gè)條件,即______,可使四邊形BEDF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為邊長為1的正方形ABCD的對(duì)角線BD上一點(diǎn),且BEBC,PCE上任一點(diǎn),PQBCQPRBER.有下列結(jié)論:PCQ∽△PER;;.其中正確的結(jié)論的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進(jìn)A、B兩種型號(hào)的低排量汽車,其中A型汽車的進(jìn)貨單價(jià)比B型汽車的進(jìn)貨單價(jià)多2萬元;花50萬元購進(jìn)A型汽車的數(shù)量與花40萬元購進(jìn)B型汽車的數(shù)量相同.

1)求A、B兩種型號(hào)汽車的進(jìn)貨單價(jià);

2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺(tái))與售價(jià)x(萬元/臺(tái))滿足函數(shù)關(guān)系yA=﹣x+20,B型汽車的每周銷量yB(臺(tái))與售價(jià)x(萬元/臺(tái))滿足函數(shù)關(guān)系yB=﹣x+14,A型汽車的售價(jià)比B型汽車的售價(jià)高2萬元/臺(tái).問A、B兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種汽車的總利潤最大?最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.

(1)求證:四邊形OCAD是平行四邊形;

(2)填空:①當(dāng)∠B= 時(shí),四邊形OCAD是菱形;

②當(dāng)∠B= 時(shí),AD與相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案