【題目】在平面直角坐標系內(nèi),以點P(1,1)為圓心、 為半徑作圓,則該圓與y軸的交點坐標是

【答案】(0,3),(0,﹣1)
【解析】解:以(1,1)為圓心, 為半徑畫圓,與y軸相交,構成直角三角形,
用勾股定理計算得另一直角邊的長為2,
則與y軸交點坐標為(0,3)或(0,﹣1).
故答案為:(0,3),(0,﹣1).
在平面直角坐標系中,根據(jù)勾股定理先求出直角三角形的另外一個直角邊,再根據(jù)點P的坐標即可得出答案.本題考查的是坐標與圖形的性質(zhì),在一個平面內(nèi),線段OA繞固定的端點O旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓.以(1,1)為圓心, 為半徑畫圓,與y軸構成的是直角三角形,用勾股定理計算可以求出與y軸交點的坐標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公園的門票價格是:成人20/張,學生10/張,滿40人可購買團體票(票價均打八折).設一個共有x人的旅游團去該公園游玩,其中學生有y.

(1)用含x,y的式子表示該旅游團應付的門票費;

(2)如果旅游團有47人,其中學生有12人,那么他們應付多少元門票費?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年來,國家對購買新能源汽車實行補助政策,2016年某省對新能源汽車中的“插電式混合動力汽車”實行每輛3萬元的補助,小劉對該省2016年“純電動乘用車”和“插電式混合動力車”的銷售計劃進行了研究,繪制出如圖所示的兩幅不完整的統(tǒng)計圖.
(1)補全條形統(tǒng)計圖;
(2)求出“D”所在扇形的圓心角的度數(shù);
(3)為進一步落實該政策,該省計劃再補助4.5千萬元用于推廣上述兩大類產(chǎn)品,請你預測,該省16年計劃大約共銷售“插電式混合動力汽車”多少輛?
注:R為純電動續(xù)航行駛里程,圖中A表示“純電動乘用車”(100km≤R<150km),B表示“純電動乘用車”(150km≤R<250km),C表示“純電動乘用車”(R≥250km),D為“插電式混合動力汽車”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市在城中村改造中,需要種植兩種不同的樹苗共棵,經(jīng)招標,承包商以萬元的報價中標承包了這項工程,根據(jù)調(diào)查及相關資料表明, 、兩種樹苗的成本價及成活率如表:

品種

購買價(元/棵)

成活率

設種植種樹苗棵,承包商獲得的利潤為元.

)求之間的函數(shù)關系式.

)政府要求栽植這批樹苗的成活率不低于,承包商應如何選種樹苗才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則B、D兩點間的距離為( 。

A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AE=AF,BECF交于點D,則對于下列結論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。

A. B. C. D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】α和β互補,且∠α>∠β,則下列表示β的余角的式子有:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),其中錯誤的有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角三角形中,兩條直角邊的長度分別為a和b,斜邊長度為c,則a2+b2=c2,即兩條直角邊的平方和等于斜邊的平方,此結論稱為勾股定理.在一張紙上畫兩個同樣大小的直角三角形ABC和A′B′C′,并把它們拼成如圖所示的形狀 (點C和A′重合,且兩直角三角形的斜邊互相垂直).請利用拼得的圖形證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B都在數(shù)軸上,O為原點.

(1)B表示的數(shù)是_________________;

(2)若點B以每秒2個單位長度的速度沿數(shù)軸向右運動,則2秒后點B表示的數(shù)是________;

(3)若點A、B分別以每秒1個單位長度、3個單位長度的速度沿數(shù)軸向右運動,而點O不動,t秒后,A、B、O三個點中有一個點是另外兩個點為端點的線段的中點,求t的值.

查看答案和解析>>

同步練習冊答案