【題目】如圖1,A1B1A2B2是水面上相鄰的兩條賽道(看成兩條互相平行的線(xiàn)段).甲是一名游泳運(yùn)動(dòng)健將,乙是一名游泳愛(ài)好者,甲在賽道A1B1上從A1處出發(fā),到達(dá)B1后,以同樣的速度返回A1處,然后重復(fù)上述過(guò)程;乙在賽道A2B2上以2m/s的速度從B2處出發(fā),到達(dá)A2后以相同的速度回到B2處,然后重復(fù)上述過(guò)程(不考慮每次折返時(shí)的減速和轉(zhuǎn)向時(shí)間).若甲、乙兩人同時(shí)出發(fā),設(shè)離開(kāi)池邊B1B2的距離為ym),運(yùn)動(dòng)時(shí)間為ts),甲游動(dòng)時(shí),ym)與ts)的函數(shù)圖象如圖2所示.

(1)賽道的長(zhǎng)度是 m,甲的速度是 m/s;

(2)經(jīng)過(guò)多少秒時(shí),甲、乙兩人第二次相遇?

(3)若從甲、乙兩人同時(shí)開(kāi)始出發(fā)到2分鐘為止,甲、乙共相遇了 次.2分鐘時(shí),乙距池邊B1B2的距離為多少米。

【答案】15025;(2;(35,40米.

【解析】試題(1)由函數(shù)圖象可以直接得出賽道的長(zhǎng)度為50米,由路程÷時(shí)間=速度就可以求出甲的速度.

2)設(shè)經(jīng)過(guò)x秒時(shí),甲、乙兩人第二次相遇,根據(jù)甲游過(guò)的路程+乙游過(guò)的路程=150米建立方程求出其解即可;

3)分別求出相遇一次的時(shí)間就可以求出相遇次數(shù),再由速度與時(shí)間的關(guān)系就可以求出結(jié)論.

試題解析:(1)由圖象,得

賽道的長(zhǎng)度是:50米,

甲的速度是:50÷20=25m/s

2)設(shè)經(jīng)過(guò)x秒時(shí),甲、乙兩人第二次相遇,由題意,得

25x+2x=150,

解得:x=;

3)由題意可以得出第一次相遇的時(shí)間為: ,

第二次相遇的時(shí)間為:

第三次相遇的時(shí)間為: ,

第四次相遇的時(shí)間為:

第五次相遇的時(shí)間為: ,

第六次相遇的時(shí)間為: 120s,

甲、乙共相遇5次.

2分鐘時(shí),乙距池邊B1B2的距離為:120-100=40米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線(xiàn)交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊長(zhǎng)5米寬4米的地毯,為了美觀(guān)設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的

(1)求配色條紋的寬度;

(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:

1)(﹣12018+32﹣(π3.140

2)(x+32x2

3)(x+2)(3xy)﹣3xx+y

4)(2x+y+1)(2x+y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)為60cm,寬為x(cm)的大長(zhǎng)方形被分割為7小塊,除陰影 A, B外,其余5塊是形狀、大小完全相同的小長(zhǎng)方形,其較短一邊長(zhǎng)為 y (cm)

(1)填空:從圖可知,每個(gè)小長(zhǎng)方形較長(zhǎng)的一邊長(zhǎng)是_________cm (用含y的代數(shù)式表示)

(2)分別求出陰影 A,B的面積,并計(jì)算陰影 A,B的面積差?(用含x,y的式子表示)

(3)當(dāng)y=10時(shí),陰影 A與陰影 B的面積差會(huì)隨著x的變化而變化嗎?請(qǐng)你作出判斷,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各組條件中,不能說(shuō)明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DF,BC=EF,∠A=DD.AB=DE,BC=EF,AC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,ABAC10cm,BC8cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線(xiàn)段BC上以3cm/s的速度由點(diǎn)BC點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)CA點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠B=90 , BC=12,tanC=如果一質(zhì)點(diǎn)P開(kāi)始時(shí)在AB邊的P0處,BP0=3.P第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且;第二步從P1跳到BC邊的P2(第2次落點(diǎn))處,且;第三步從P2跳到AB邊的P3(第3次落點(diǎn))處,且;…;質(zhì)點(diǎn)P按照上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2014與點(diǎn)P2015之間的距離為(  )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)AB分別在y軸的正半軸和x軸的正半軸上,OA=OB,AOB的面積為18.過(guò)點(diǎn)A作直線(xiàn)ly軸.

1)求點(diǎn)A的坐標(biāo);

2)點(diǎn)C是第一象限直線(xiàn)l上一動(dòng)點(diǎn),連接BC,過(guò)點(diǎn)BBDBC,交y軸于點(diǎn)設(shè)點(diǎn)D的縱坐標(biāo)為t,點(diǎn)C的橫坐標(biāo)為d,求td的關(guān)系式;

3)在(2)的條件下,過(guò)點(diǎn)D作直線(xiàn)DFAB,交x軸于點(diǎn)F,交直線(xiàn)l于點(diǎn)E,OF=EC時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案