【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1, ),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )

A.(0,﹣2)
B.(1,﹣
C.(2,0)
D.( ,﹣1)

【答案】D
【解析】解:作AB⊥x軸于點(diǎn)B,
∴AB= 、OB=1,
則tan∠AOB= = ,
∴∠AOB=60°,
∴∠AOy=30°
∴將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′后,如圖所示,
OA′=OA= =2,∠A′OC=30°,
∴A′C=1、OC= ,即A′( ,﹣1),
故選:D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)銳角三角函數(shù)的定義的理解,了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P以每秒1個(gè)單位的速度從A向C運(yùn)動(dòng),同時(shí)點(diǎn)Q以每秒2個(gè)單位的速度從A→B→C方向運(yùn)動(dòng),它們到C點(diǎn)后都停止運(yùn)動(dòng),設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒.

(1)在運(yùn)動(dòng)過(guò)程中,求P,Q兩點(diǎn)間距離的最大值;
(2)經(jīng)過(guò)t秒的運(yùn)動(dòng),求△ABC被直線PQ掃過(guò)的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)P,Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在時(shí)間t,使得△PQC為等腰三角形?若存在,求出此時(shí)的t值;若不存在,請(qǐng)說(shuō)明理由(≈2.24,結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過(guò)A,C兩點(diǎn).
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動(dòng)點(diǎn)P.
①如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);
②如圖2,過(guò)點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng),如果租用6輛大客車(chē)和5輛小客車(chē)恰好全部坐滿,已知每輛大客車(chē)的乘客座位數(shù)比小客車(chē)多17個(gè).
(1)求每輛大客車(chē)和每輛小客車(chē)的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了30人,學(xué)校決定調(diào)整租車(chē)方案,在保持租用車(chē)輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車(chē)數(shù)量的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,BC切⊙O于點(diǎn)B,AD⊥BC,垂足為D,OA是⊙O的半徑,且OA=3.
(1)求證:AB平分∠OAD;
(2)若點(diǎn)E是優(yōu)弧 上一點(diǎn),且∠AEB=60°,求扇形OAB的面積.(計(jì)算結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=AB,∠OAB=90°,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)A,B兩點(diǎn).若點(diǎn)A的坐標(biāo)為(n,1),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=90°,AB=BC,點(diǎn)E、F在AC上,∠EBF=45°,若AE=1,CF=2,則AB的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點(diǎn)G.
(1)試說(shuō)明DF=CE;
(2)若AC=BF=DF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案