【題目】如圖,在矩形ABCD中,AB2AD4,點(diǎn)E在邊BC上,把△DEC沿DE翻折后,點(diǎn)C落在C處.若△ABC恰為等腰三角形,則CE的長(zhǎng)為__________

【答案】2

【解析】

根據(jù)△ABC恰為等腰三角形分兩種情況進(jìn)行分類(lèi)討論,①當(dāng)C′A=C′B時(shí),根據(jù)翻折的性質(zhì)和勾股定理可求出DH,再根據(jù)“K”型相似,易得DHC′C′FE即可求出,②當(dāng)AB=AC′時(shí),此時(shí)四邊形CEC′D是正方形易得出答案.

如圖1,當(dāng)C′A=C′B時(shí),C′HADHBCF,

易知HC′=FC′=1,RtDHC′,

DHC′C′FE,可得:,

EF=,

∵四邊形DHFC是矩形,

CF=DH=,

如圖2,當(dāng)AB=AC′時(shí),點(diǎn)C′AD,此時(shí)四邊形CEC′D是正方形,CE=2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC8,BC16,點(diǎn)D在邊BC上,沿DE將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,連接AD,點(diǎn)P在線段AD上,當(dāng)點(diǎn)P到△ABC的直角邊距離等于5時(shí),AP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)活動(dòng)小組為了解全縣九年級(jí)學(xué)生在抗新冠病毒疫情期間平均每天居家鍛煉時(shí)間,向全縣部分學(xué)生進(jìn)行了抽樣調(diào)查,并將收集到的數(shù)據(jù)整理成如圖的統(tǒng)計(jì)圖(部分?jǐn)?shù)據(jù)未標(biāo)出).

1)這次抽樣調(diào)查的學(xué)生人數(shù)一共有 人;

2)求頻數(shù)分布表中 a 的值,并補(bǔ)全頻數(shù)分布直方圖; ,

3)若該縣有 5000 名九年級(jí)學(xué)生,請(qǐng)你估計(jì)全縣九年級(jí)學(xué)生平均每天居家鍛煉時(shí)間不超過(guò)20分鐘的有多少人?

時(shí)間 x/

人數(shù)/

頻率

0x≤10

102

25.5%

10x≤20

132

33%

20x≤30

a

17.5%

30x≤40

59

14.75%

40x≤50

29

7.25%

50x≤60

8

2%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,-2),連接BC、AD

(1)將矩形OBHC繞點(diǎn)B按逆時(shí)針旋轉(zhuǎn)90°后,再沿軸對(duì)折到矩形GBFE(點(diǎn)C與點(diǎn)E對(duì)應(yīng),點(diǎn)O與點(diǎn)G對(duì)應(yīng)),求點(diǎn)E的坐標(biāo);

(2)設(shè)過(guò)點(diǎn)E的直線交AB于點(diǎn)P,交CD于點(diǎn)Q

①當(dāng)四邊形PQCB為平行四邊形時(shí),求點(diǎn)P的坐標(biāo);

②是否存在點(diǎn)P,使直線PQ分梯形ADCB的面積為13兩部分?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車(chē)庫(kù).如圖是停車(chē)庫(kù)坡道入口的設(shè)計(jì)圖,其中MN是水平線,MNAD,ADDE,CFAB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)CDE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫(xiě)有:限高   米).如果進(jìn)入該車(chē)庫(kù)車(chē)輛的高度不能超過(guò)線段CF的長(zhǎng),則該停車(chē)庫(kù)限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在矩形ABCD中,AD=10cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AD向終點(diǎn)D移動(dòng),設(shè)移動(dòng)時(shí)間為(s) .連接PC,以PC為一邊作正方形PCEF,連接DE、DF

1)求正方形PCEF的面積(用含的代數(shù)式來(lái)表示,不要求化簡(jiǎn)),并求當(dāng)正方形PCEF的面積為25 cm2時(shí)的值;

2)設(shè)△DEF的面積為(cm2),求之間的函數(shù)關(guān)系式,并求當(dāng)為何值時(shí)?△DEF的面積取得最小值,這個(gè)最小值是多少?

3)求當(dāng)為何值時(shí)?△DEF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC邊上一點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交BE的延長(zhǎng)線于F,且AF=CD,連接CF.

(1)求證:△AEF≌△DEB;

(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線PDCA的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)AAECD于點(diǎn)E,過(guò)點(diǎn)BBFCD于點(diǎn)F

1)求證:EF +AE= BF

2)求證:△PDA∽△PCD ;

3)若AC=6BC=8,求線段PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ABBC1,將△ABD沿射線DB平移得到△A'B'D',連接BC,DC,則B'C+D'C的最小值是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案