【題目】如圖,已知:在平行四邊形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求證:△AEH≌△CGF
(2)求證:四邊形EFGH是菱形.
【答案】
(1)
證明:如圖,∵四邊形ABCD是平行四邊形,
∴∠A=∠C,
在△AEH與△CGF中,
,
∴△AEH≌△CGF(SAS)
(2)
證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,∠B=∠D.
又∵AE=CG,AH=CF,
∴BE=DG,BF=DH,
在△BEF與△DGH中,
∴△BEF≌△DGH(SAS),
∴EF=GH.
又由(1)知,△AEH≌△CGF,
∴EH=GF,
∴四邊形EFGH是平行四邊形,
∴HG∥EF,
∴∠HGE=∠FEG,
∵EG平分∠HEF,
∴∠HEG=∠FEG,
∴∠HEG=∠HGE,
∴HE=HG,
∴四邊形EFGH是菱形.
【解析】(1)由全等三角形的判定定理SAS證得結(jié)論;
(2)易證四邊形EFGH是平行四邊形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分線,易得∠HEG=∠FEG,根據(jù)等量代換可得∠HEG=∠HGE,從而有HE=HG,易證四邊形EFGH是菱形.
此題考查了平行四邊形的判定;與性質(zhì),菱形的判定與性質(zhì)以及全等三角形的判定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程ax2﹣3x﹣1=0的兩個不相等的實數(shù)根都在﹣1和0之間(不包括﹣1和0),則a的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東53°方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處.
(參考數(shù)據(jù):sin53°=0.80,cos53°=0.60,tan53°=0.33,=1.41)
(1)在圖中畫出點B,并求出B處與燈塔P的距離(結(jié)果取整數(shù));
(2)用方向和距離描述燈塔P相對于B處的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小劉回鄉(xiāng)創(chuàng)辦小微企業(yè),初期購得原材料若干噸,每天生產(chǎn)相同件數(shù)的某種產(chǎn)品,單件產(chǎn)品所耗費的原材料相同.當(dāng)生產(chǎn)6天后剩余原材料36噸,當(dāng)生產(chǎn)10天后剩余原材料30噸.若剩余原材料數(shù)量小于或等于3噸,則需補充原材料以保證正常生產(chǎn).
(1)求初期購得的原材料噸數(shù)與每天所耗費的原材料噸數(shù);
(2)若生產(chǎn)16天后,根據(jù)市場需求每天產(chǎn)量提高20%,則最多再生產(chǎn)多少天后必須補充原材料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,臺風(fēng)中心位于點O處,并沿東北方向(北偏東45°),以40千米/小時的速度勻速移動,在距離臺風(fēng)中心50千米的區(qū)域內(nèi)會受到臺風(fēng)的影響,在點O的正東方向,距離千米的地方有一城市A.
(1)問:A市是否會受到此臺風(fēng)的影響,為什么?
(2)在點O的北偏東15°方向,距離80千米的地方還有一城市B,問:B市是否會受到此臺風(fēng)的影響?若受到影響,請求出受到影響的時間;若不受到影響,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com