【題目】旅客乘車按規(guī)定可以隨身攜帶一定重量的行李,如果超過規(guī)定,則需要購買行李票,設(shè)行李費(fèi)y(元)與行李重量x(千克)的關(guān)系如圖,根據(jù)圖象回答下列問題:
(1)行李重量在________千克以內(nèi),不必交費(fèi);
(2)當(dāng)行李重量60千克時,交費(fèi)____元;
(3)當(dāng)行李重量________千克時,交費(fèi)10元;
(4)行李重量每增加1千克,多交_________元;
(5)y= __________ ( y與x之間的關(guān)系式)
【答案】(1)30;(2)5;(3)90;(4);(5)
【解析】分析:(1)如圖:當(dāng)行李重量在30kg內(nèi)不必繳費(fèi);
(2)當(dāng)x=60kg時繳費(fèi)為5元;
(3)當(dāng)x=90kg時繳費(fèi)為10元;
(5)設(shè)函數(shù)關(guān)系式為y=kx+b,根據(jù)題意列方程組解得k,b的值.解得y=x-5,可知當(dāng)行李重量每增加1kg,多交元.
詳解:(1)行李重量在30千克以內(nèi),不必交費(fèi);
(2)當(dāng)行李重量60千克時,交費(fèi)5元;
(3)當(dāng)行李重量90千克時,交費(fèi)10元;
(4)行李重量每增加1千克,多交16元.
(5)設(shè)y=kx+b,根據(jù)題意,可得方程組 ,.
解得k=,b=5,所以y=x5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過點(diǎn)B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點(diǎn)E,PN交CD于點(diǎn)F
(1)當(dāng)△PMN所放位置如圖①所示時,則∠PFD與∠AEM的數(shù)量關(guān)系為 ;
(2)當(dāng)△PMN所放位置如圖②所示時,求證:∠PFD﹣∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點(diǎn)O,且∠DON=30°,∠PEB=15°,求∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1、l2相交于點(diǎn)A(2,3),直線l1與x軸交點(diǎn)B的坐標(biāo)為(﹣1,0),直線l2與y軸交于點(diǎn)C,已知直線l2的解析式為y=2.5x﹣2,結(jié)合圖象解答下列問題:
(1)求直線l1的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,AC=BC=2 ,點(diǎn)P在以斜邊AB為直徑的半圓上,M為PC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動至點(diǎn)B時,點(diǎn)M運(yùn)動的路徑長是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高致病性禽流感是比SARS傳染速度更快的傳染。疄榉乐骨萘鞲新,政府規(guī)定:離疫點(diǎn)3km范圍內(nèi)為撲殺區(qū);離疫點(diǎn)3km~5km范圍內(nèi)為免疫區(qū),對撲殺區(qū)與免疫區(qū)內(nèi)的村莊、道路實(shí)行全封閉管理.現(xiàn)有一條筆直的公路AB通過禽流感病區(qū),如圖,在撲殺區(qū)內(nèi)公路CD長為4km.
(1)請用直尺和圓規(guī)找出疫點(diǎn)O(不寫作法,保留作圖痕跡);
(2)求這條公路在免疫區(qū)內(nèi)有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A.5x2﹣4x3=1B.x2y﹣xy2=0
C.﹣3ab﹣2ab=﹣5abD.2m2+3m3=5m5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn).過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com