【題目】為了預(yù)防“流感”,某學(xué)校對教室采用藥熏法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點(diǎn)燃后4分鐘燃盡,此時室內(nèi)每立方米空氣中含藥量為8毫克.

(1)求藥物燃燒時,y與x之間函數(shù)的表達(dá)式;

(2)求藥物燃盡后,y與x之間函數(shù)的表達(dá)式;

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時,才能有效殺滅空氣中的病菌,那么此次消毒有效時間有多長?

【答案】(1)y=2x;(2)y=;(3)此次消毒有效時間為16﹣1=15分鐘.

【解析】

(1)利用待定系數(shù)法求解可得;

(2)利用待定系數(shù)法求解可得;

(3)求出兩函數(shù)解析式中y=2x的值,從而得出答案.

(1)藥物燃燒時,設(shè)y=kx,

將(4,8)代入,得:8=4k,

解得k=2,

則y=2x;

(2)藥物燃盡后,設(shè)y=,

將(4,8)代入,得:8=,

解得:m=32,

則y=

(3)在y=2x中,當(dāng)y=2時,2x=2,解得x=1;

在y=中,當(dāng)y=2時,=2,解得x=16;

則此次消毒有效時間為16﹣1=15分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個單位長度的速度向點(diǎn)C作勻速運(yùn)動;同時,動點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個單位長度的速度向點(diǎn)B作勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.連接PQ.

(1)填空:b=   c=   ;

(2)在點(diǎn)P,Q運(yùn)動過程中,APQ可能是直角三角形嗎?請說明理由;

(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請求出運(yùn)動時間t;若不存在,請說明理由;

(4)如圖,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對稱點(diǎn)Q′恰好落在線段BC上時,請直接寫出點(diǎn)Q′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:如:解方程x(x+4)=6.

解:原方程可變形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接開平方并整理,得,.我們稱曉東這種解法為平均數(shù)法”.

(1)下面是曉東用平均數(shù)法解方程(x+2)(x+6)=5時寫的解題過程.

解:原方程可變形,得

[(x+□)﹣〇][(x+□)+〇]=5.

(x+□)2﹣〇2=5,

(x+□)2=5+〇2

直接開平方并整理,得x1=,x2=¤.

上述過程中的“□”,“〇”,“”,“¤”表示的數(shù)分別為   ,   ,      

(2)請用平均數(shù)法解方程:(x﹣3)(x+1)=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實(shí)踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計.現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);

(3)若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E分別在ACBC上,如果測得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,A、B兩地間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACDFAD=BE,要使△ABC≌△DEF,所添加條件不正確的是(

A.AC=DFB.BCEFC.BC=EFD.C=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了三角形全等的判定方法(即SSSSAS,ASA,AAS)和直角三角形全等的判定方法(即HL)后,我們繼續(xù)對兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進(jìn)行研究.

(初步思考)

我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=E,然后對∠B進(jìn)行分類,可以分為B是直角、鈍角、銳角三種情況進(jìn)行探究.

(深入探究)

第一種情況:當(dāng)∠B為銳角時,△ABC和△DEF不一定全等.

1)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=E,且∠B,∠E都是銳角,請你用尺規(guī)在圖中確定點(diǎn)D,使△DEF和△ABC不全等(不寫作法,保留作圖痕跡);

第二種情況:當(dāng)∠B為直角時,△ABC≌△DEF

2)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=E=90°,根據(jù)____,可以知道RtABCRtDEF

第三種情況:當(dāng)∠B為鈍角時,△ABC≌△DEF

3)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=E,且∠B,∠E都是鈍角,求證:△ABC≌△DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸相交于點(diǎn),與軸相交于點(diǎn)

1)求點(diǎn),的坐標(biāo);

2)求當(dāng)時,的值,當(dāng)時,的值;

3)過點(diǎn)作直線軸相交于點(diǎn),且使,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美是一種感覺,本應(yīng)沒有什么客觀的標(biāo)準(zhǔn),但在自然界里,物體形狀的比例卻提供了在的稱與協(xié)調(diào)上的一種美感的參考,在數(shù)學(xué)上,這個比例稱為黃金分割.在人體由腳底至肚臍的長度與身高的比例上,肚臍是理想的黃金分割點(diǎn),也就是說,若此比值越接近就越給別人一種美的感覺. 某女士身高為,腳底至肚臍的長度與身高的比為為了追求美,地想利用高跟鞋達(dá)到這一效果 ,那么她選的高跟鞋的高度約為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案