【題目】我們把函數(shù)y1x23x2(x0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來組成函數(shù)y3的圖象.若直線ykx2與函數(shù)y3的圖象剛好有兩個交點,則滿足條件的k的值為______.

【答案】-3<k<3

【解析】

根據(jù)翻折找出函數(shù)y2的解析式,將直線y=kx+2分別代入函數(shù)y1y2的解析式中,求出x的值,根據(jù)x的取值范圍列出關(guān)于k的一元一次不等式組,解不等式組即可得出結(jié)論.

解:依照題意畫出圖形,如圖所示.

∵函數(shù)y1=x2-3x+2x0)沿y軸翻折得到函數(shù)y2,

y2=x2+3x+2x0).

若要直線y=kx+2與函數(shù)y3的圖象剛好有兩個交點,則需直線y=kx+2y1、y2均有交點.

將直線y=kx+2分別代入y1、y2中得:

x2-3+kx=0,x2+3-kx=0

解得:x1=3+kx2=k-3,x3=0(舍去).

y1=x2-3x+2x0),

x1=3+k0

y2=x2+3x+2x0),

x2=k-30

聯(lián)立得:

,

解得:-3k3

故答案為:-3k3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的位置如圖所示:(每個小方格都是邊長為1個單位長度的正方形)

1)畫出關(guān)于點的中心對稱圖形;

2)將繞著點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的;

3)請利用格點圖,僅用無刻度的直尺畫出邊上的高(保留作圖痕跡);

4P軸上一點,且PBC是以BC為直角邊的直角三角形.請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一節(jié)數(shù)學課后,老師布置了一道課后練習題:

如圖1,的直徑,點上,,垂足為,,分別交、于點.求證:.

1 2

1)本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.

2)如圖2,若點和點的兩側(cè),的延長線交于點,的延長線交于點,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;

3)在(2)的條件下,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸于點A(﹣1,0)和點B3,0),與y軸交于點C

1)求拋物線的解析式;

2)連接BC,若點P為線段BC上的一個動點(不與點B、點C重合),過點P作直線PNx軸于點N,交拋物線于點M,當△BCM面積最大時,求△BPN的周長.

3)在(2)的條件下,當△BCM面積最大時,在拋物線的對稱軸上是否存在點Q,使△CNQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在等邊ABC,DABC內(nèi)的一點,ADB=120°,ADC=90°,ABD繞點A逆時針旋轉(zhuǎn)60°ACE連接DE

1)求證AD=DE;

2)求DCE的度數(shù);

3)若BD=1AD,CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=BPQ.

(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;

(2)如圖2,選接AB,交PQ于點M,點N在線段PM(不與P、M重合),連接ON、OP,若∠NOP+2OPN=90°,探究直線ABON的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABC的平分線交AD邊于點E,點FCD的中點,連接EF,若AB8,且EF平分∠BED,則AD的長為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為⊙O內(nèi)接等邊三角形,將ABC繞圓心O旋轉(zhuǎn)30°DEF處,連接AD、AE,則∠EAD的度數(shù)為( )

A.150°B.135°C.120°D.105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內(nèi)作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案