【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.
(1)求證:∠CBP=∠ADB.
(2)若OA=2,AB=1,求線段BP的長.
【答案】(1)證明見解析;(2)BP=7.
【解析】
(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質得到∠OBC=90°,然后利用等量代換進行證明;
(2)證明△AOP∽△ABD,然后利用相似比求BP的長.
詳(1)證明:連接OB,如圖,
∵AD是⊙O的直徑,
∴∠ABD=90°,
∴∠A+∠ADB=90°,
∵BC為切線,
∴OB⊥BC,
∴∠OBC=90°,
∴∠OBA+∠CBP=90°,
而OA=OB,
∴∠A=∠OBA,
∴∠CBP=∠ADB;
(2)解:∵OP⊥AD,
∴∠POA=90°,
∴∠P+∠A=90°,
∴∠P=∠D,
∴△AOP∽△ABD,
∴,即,
∴BP=7.
科目:初中數(shù)學 來源: 題型:
【題目】(7分)現(xiàn)有一個六面分別標有數(shù)字1,2,3,4,5,6且質地均勻的正方形骰子,另有三張正面分別標有數(shù)字1,2,3的卡片(卡片除數(shù)字外,其他都相同),先由小明投骰子一次,記下骰子向上一面出現(xiàn)的數(shù)字,然后由小王從三張背面朝上放置在桌面上的卡片中隨機抽取一張,記下卡片上的數(shù)字.
(1)請用列表或畫樹形圖(樹狀圖)的方法,求出骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積為6的概率;
(2)小明和小王做游戲,約定游戲規(guī)則如下:若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積大于7,則小明贏;若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積小于7,則小王贏,問小明和小王誰贏的可能性更大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在4×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發(fā)向右移動,點P的運動速度為每秒2個單位,點Q的運動速度為每秒1個單位,當點P運動到點C時,兩個點都停止運動,設運動時間為t(0<t<4).
(1)請在4×8的網(wǎng)格紙圖①中畫出t為3秒時的線段PQ.并求其長度;
(2)若M是BC的中點,記△PQM的面積為S,請用含有t的代數(shù)式來表示S;
(3)當t為多少時,△PQB是以PQ為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( )
A. π﹣6 B. π C. π﹣3 D. +π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.
(1)這三家農(nóng)戶所得土地的大小、形狀都相同,請你在圖中試著分一分,并簡潔說明你的理由.
(2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個公共頂點,請你在備用圖中試著分一分,并簡潔說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地是一個降水豐富的地區(qū),今年4月初,由于連續(xù)降雨導致該地某水庫水位持續(xù)上漲,經(jīng)觀測水庫1日—4日的水位變化情況,發(fā)現(xiàn)有這樣規(guī)律, 1日,水庫水位為米,此后日期每增加一天,水庫水位就上漲米。
(1)請求出該水庫水位(米)與日期(日)之間的函數(shù)表達式;(注:4月1日,即,4月2日,即,…,以次類推)
(2)請用求出的函數(shù)表達式預測該水庫今年4月6日的水位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】題目:如圖①,在四邊形ABCD中,AB=AD,∠ABC=∠ADC,那么BC=CD嗎?請說明理由.
小明的作法如下:
如圖②,連結AC.
∵AB=AD,∠ABC=∠ADC,AC=AC.
∴△ABC≌△ADC.
∴BC=CD.
(1)小明的作法錯誤的原因是 .
(2)請正確解答這道題目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com