【題目】已知⊙O 的直徑為 4,AB 是⊙O 的弦,∠AOB=120°,點(diǎn) P 在⊙O 上,若點(diǎn) P到直線 AB 的距離為 1,則∠PAB 的度數(shù)為_____

【答案】15°或 30°或 105°

【解析】

OP1AB 交⊙O P1 AB H,過(guò)點(diǎn) O 作直線 P2P3AB 交⊙O P2,P3.由垂徑定理可得∠AOH=60°,進(jìn)而可得∠OAH=30°,即可求出OH=1,進(jìn)而可知P1,P2,P3 是滿(mǎn)足條件的點(diǎn),根據(jù)圓周角定理求出∠P1AB、P3AB、P2AB的度數(shù)即可.

如圖作 OP1AB 交⊙O P1 AB H,過(guò)點(diǎn) O 作直線 P2P3AB 交⊙O P2,P3

∵∠AOB=120°,OA=OB,OHAB,

∴∠AOH=AOB=60°,AHO=90°,

∴∠OAH=30°,

∵⊙O 的直徑為 4,

OH=OA= 1,

HP1=1,

∴直線 AB 與直線 P2P3 之間的結(jié)論距離為 1,

P1,P2,P3 是滿(mǎn)足條件的點(diǎn),

∴∠P1AB=BOP1=30°,P3AB=BOP3=15°,

P2P3是⊙O的直徑,

∴∠P2AP3=90°,

∴∠P2AB=P2AP3+P3AB=90°+15°=105°,

故答案為:15° 30° 105°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無(wú)滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),△ABC,AB=BC,PAB邊上一點(diǎn),連接CP,PA、PC為鄰邊作APCDACPD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).

(1)求證: ∠EAP=∠EPA;

(2)APCD是否為矩形?請(qǐng)說(shuō)明理由;

(3)如圖(2),FBC中點(diǎn),連接FP,∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BAFP延長(zhǎng)線的交點(diǎn)).猜想線段EMEN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a<0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A,頂點(diǎn)D的坐標(biāo)分別為A(﹣1,0),D(1,m).

(1)當(dāng)OB=OC時(shí),直接寫(xiě)出拋物線的解析式;

(2)直線CD必經(jīng)過(guò)某一定點(diǎn),請(qǐng)你分析理由并求出該定點(diǎn)坐標(biāo);

(3)點(diǎn)P為直線CD上一點(diǎn),當(dāng)以點(diǎn)P,A,B為頂點(diǎn)的三角形是等腰直角三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 xOy 中,拋物線y=ax2+bx+c 上部分點(diǎn)的橫、縱坐標(biāo)間的對(duì)應(yīng)值如表:

則下列結(jié)論正確的是(

A. 拋物線的開(kāi)口向下

B. 拋物線的頂點(diǎn)坐標(biāo)為(2.5,﹣8.75)

C. 當(dāng) x>4 時(shí),y x 的增大而減小

D. 拋物線必經(jīng)過(guò)定點(diǎn)(0,﹣5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,O的內(nèi)接四邊形ABCD兩組對(duì)邊的延長(zhǎng)線分別交于點(diǎn)E、F

(1)若E=F時(shí),求證:ADC=ABC;

(2)若E=F=42°時(shí),求A的度數(shù);

(3)若E=α,F=β,且α≠β請(qǐng)你用含有α、β的代數(shù)式表示A的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,延長(zhǎng)ABE,使AE=AC,過(guò)EEFACF,EFBCG

1)求證:BE=CF;

2)若∠E=40°,求∠AGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形 OABC 在圖 1 中的直角坐標(biāo)系中,且OCy 軸上,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為 A(18,0),B(12,8),動(dòng)點(diǎn) P、Q分別從 O、B兩點(diǎn)出發(fā),點(diǎn) P以每秒2個(gè)單位的速度沿 OA 向終點(diǎn) A 運(yùn)動(dòng),點(diǎn) Q 以每秒1個(gè)單位的速度沿BCC運(yùn)動(dòng),當(dāng)點(diǎn) P停止運(yùn)動(dòng)時(shí),點(diǎn) Q 同時(shí)停止運(yùn)動(dòng).動(dòng)點(diǎn) P、Q 運(yùn)動(dòng)時(shí)間為 t(單位:秒).

(1)當(dāng) t 為何值時(shí),四邊形 PABQ 是平行四邊形,請(qǐng)寫(xiě)出推理過(guò)程;

(2)如圖 2,線段 OB、PQ 相交于點(diǎn) D,過(guò)點(diǎn) D DE∥OA,交 AB 于點(diǎn) E,射線 QE x 軸于點(diǎn) F,PF=AO.當(dāng) t 為何值時(shí),△PQF 是等腰三角形?請(qǐng)寫(xiě)出推理過(guò)程;

(3)如圖 3,過(guò) B BG⊥OA 于點(diǎn) G,過(guò)點(diǎn) A AT⊥x 軸于點(diǎn) A,延長(zhǎng) CB AT于點(diǎn) T.將點(diǎn) G 折疊,折痕交邊 AG、BG 于點(diǎn) M、N,使得點(diǎn) G 折疊后落在AT 邊上的點(diǎn)為 G′,求 AG′的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015山東省德州市,24,12分)已知拋物線y=-mx2+4x+2mx軸交于點(diǎn)Aα0), Bβ,0),且

1)求拋物線的解析式.

2)拋物線的對(duì)稱(chēng)軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對(duì)稱(chēng)點(diǎn)為E.是否存在x軸上的點(diǎn)My軸上的點(diǎn)N,使四邊形DNME的周長(zhǎng)最?若存在,請(qǐng)畫(huà)出圖形(保留作圖痕跡),并求出周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

3)若點(diǎn)P在拋物線上,點(diǎn)Qx軸上,當(dāng)以點(diǎn)D、E、PQ為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案