【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(diǎn)(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點(diǎn)D,射線PD交射線CA于點(diǎn)E.
(1)若點(diǎn)E在線段CA的延長線上,設(shè)BP=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)BP=時,試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE=S△ABC,求BP的長.
【答案】(1)(0<x<);(2)相切;(3)或或.
【解析】(1)過A作AF⊥BC于F,過P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=ACcos30°=6×=,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=,∴PB+CP= =,∴,∵BD=2BH=x<6,∴x<,∴x的取值范圍是0<x<;
(2)相切.理由如下:
∵BP=,∴CP=,∴PE=PC==PB,∴射線CA與⊙P相切;
(3)當(dāng)D點(diǎn)在線段BA上時,連接AP,∵S△ABC=BCAF==,∵S△APE=AEPE=y×(6+y)=S△ABC=,解得:y=,代入得x=.
當(dāng)D點(diǎn)BA延長線上時,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=,∴,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AEPE=x=y(6﹣y)=S△ABC=,解得y=或,代入得x=或.
綜上可得,BP的長為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,∠C=90°,線段DE在射線BC上,且DE=AC,線段DE沿射線BC運(yùn)動,開始時,點(diǎn)D與點(diǎn)B重合,點(diǎn)D到達(dá)點(diǎn)C時運(yùn)動停止,過點(diǎn)D作DF=DB,與射線BA相交于點(diǎn)F,過點(diǎn)E作BC的垂線,與射線BA相交于點(diǎn)G.設(shè)BD=x,四邊形DEGF與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤m,1<x≤m,m<x≤3時,函數(shù)的解析式不同).
(1)填空:BC的長是 ;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)便民超市為了了解顧客的消費(fèi)情況,在該小區(qū)居民中進(jìn)行調(diào)查,詢問每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請問:
(1)這種統(tǒng)計圖通常被稱為什么統(tǒng)計圖?
(2)此次調(diào)查共詢問了多少戶人家?
(3)超過半數(shù)的居民每周去多少次超市?
(4)請將這幅圖改為扇形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線與y軸相交于點(diǎn)A,拋物線的對稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.
(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.
①點(diǎn)B的坐標(biāo)為( 、 ),BK的長是 ,CK的長是 ;
②求點(diǎn)F的坐標(biāo);
③請直接寫出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個動點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開始沿線段EH向點(diǎn)H運(yùn)動,至與點(diǎn)N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點(diǎn)M的運(yùn)動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
甲、乙兩人同時從相距25千米的A地去B地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達(dá)B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好3小時,求兩人的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OA⊥OC,OB⊥OD,下面結(jié)論中,其中說法正確的是( 。
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C在同一直線上,△ABD和△BCE都是等邊三角形.則在下列結(jié)論中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正確的結(jié)論是(填寫序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com