【題目】作圖題:(不要求寫作法)如圖,△ABC在平面直角坐標(biāo)系中,其中,點(diǎn)A,B,C的坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)作△ABC關(guān)于y軸對(duì)稱的△A1B1C1 , 其中,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為A1、B1、C1
(2)寫出點(diǎn)A1、B1、C1的坐標(biāo).

【答案】
(1)

解:如圖所示,△A1B1C1即為所求;


(2)

解:點(diǎn)A1、B1、C1的坐標(biāo)分別為(2,1),(4,5),(5,2)


【解析】(1)由已知點(diǎn)出發(fā)向所給直線作垂線,并確定垂足;直線的另一側(cè),以垂足為一端點(diǎn),作一條線段使之等于已知點(diǎn)和垂足之間的線段的長(zhǎng),得到線段的另一端點(diǎn),即為對(duì)稱點(diǎn);連接這些對(duì)稱點(diǎn),就得到原圖形的軸對(duì)稱圖形;(2)根據(jù)三角形各頂點(diǎn)的位置,寫出坐標(biāo)即可.
【考點(diǎn)精析】通過靈活運(yùn)用作軸對(duì)稱圖形,掌握畫對(duì)稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱點(diǎn)③依次連線即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列三個(gè)命題:①對(duì)頂角相等;②全等三角形的對(duì)應(yīng)邊相等;③如果兩個(gè)實(shí)數(shù)是正數(shù),它們的積是正數(shù).它們的逆命題成立的個(gè)數(shù)是( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=,點(diǎn)P為線段BE延長(zhǎng)線上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F

(1)求證:;

(2)連接BD,請(qǐng)你判斷AC與BD有什么位置關(guān)系?并說明理由;

(3)設(shè)PE=x,△PBD的面積為S,求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.5a﹣2a=3
B.(x+2y)2=x2+4y2
C.x8÷x4=x2
D.(2a)3=8a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B、C、D在⊙O上,AB∥CD,AB=24,CD=10,⊙O的半徑為13,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,D為BC延長(zhǎng)線上的一點(diǎn),CE平分∠ACD, CE=BD,求證:

(1)△ABD≌△ACE;
(2)△ADE為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OD是∠AOB的角平分線,C點(diǎn)OD上一點(diǎn).

⑴過點(diǎn)C畫直線CE∥OB,交OA于E;
⑵過點(diǎn)C畫直線CF∥OA,交OB于F;
⑶過點(diǎn)C畫線段CG⊥OA,垂足為G.
根據(jù)畫圖回答問題:
①線段長(zhǎng)就是點(diǎn)C到OA的距離;
②比較大小:CECG(填“>”或“=”或“<”);
③通過度量比較∠AOD與∠ECO的關(guān)系是:∠AOD∠ECO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yx22x+5與坐標(biāo)軸的交點(diǎn)個(gè)數(shù)為( 。

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x22xm0

(1)若該方程一定有實(shí)數(shù)根,求m的取值范圍

(2)當(dāng)m=-3時(shí),求方程的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案